
Table of Contents

15 Software 2
A Trade Secret . 2
B Patent . 3
C Copyright . 9
Problems . 27

1. Frederick P. Brooks, The Mythical
Man‑Month (1975)

15

Software

The programmer, like the poet, works only slightly removed
from pure thought‑stuff. He builds his castles in the air,
from air, creating by exertion of the imagination. Few me‑
dia of creation are so flexible, so easy to polish and rework,
so readily capable of realizing grand conceptual structures.
Yet the program construct, unlike the poet’s words, is real
in the sense that it moves and works, producing visible out‑
puts separate from the construct itself. The magic of myth
and legend has come true in our time. One types the cor‑
rect incantation on a keyboard, and a display screen comes
to life, showing things that never were nor could be.1

Software presents a subtly different functionality problem than physi‑
cal designs do. Software is plainly functional: when run on a computer,
it does something. But there are at least two distinct ways in which
software might be more than just functional. First, the software’s code
might contain nonexpressive elements: multiple different programs can
do the same thing, so a programmer typically has at least some design
choices not dictated by a given function. Second, the thing the software
does might be expressive: it might show a movie or play a song. (Recall
Stern’s treatment of a video game as an audiovisual work.) Complicat‑
ing matters even more, a program’s output might itself be both aesthetic
and functional, which is typically the case for user interfaces. Pay at‑
tention to how each body of intellectual property law teases out these
different aspects of software.

A Trade Secret

Trade secret protection is obviously available and effective for software
used internally within a business. The more interesting question is
whether and how a business can make software available to others while
mainting at least some of the software’s design as a secret. A later chap‑
ter will consider whether contractual restrictions help, but for now, fo‑
cus on the practical question of what software necessarily discloses to
its users.

B. PATENT 3

Barr‑Mullin Compu‑Rip rip saw feeder

Barr-Mullin, Inc. v. Browning
424 S.E.2d 226 (N.C. Ct. App. 1993)

According to defendants, the COMPU‑RIP software is not a trade se‑
cret since it is (1) not subject to reasonable efforts to maintain its secrecy
and (2) defendants reverse engineered this software. The COMPU‑RIP
software is contained in the form of ”programmable read‑only mem‑
ory chips” (PROMS) imbedded in the COMPU‑RIP machinery. These
PROMS contain only the ”object code” version of the computer pro‑
gram. This is the version of the computer software which is ”read” by
the computer’s machinery. Computer programmers do not write com‑
puter software in object code; rather, the software is written in ”source
code” and then translated into object code so that the computer can ex‑
ecute the program. Since the COMPU‑RIP software was sold in PROM
form, the source code was not available to the general public.

The affidavits of Timothy Toombs and Gary Ruggles, who holds a
Ph.D. in Electrical Engineering, indicate that because the COMPU‑RIP
software is distributed in object code form it is practically impossible
to make any meaningful changes to the software. This evidence es‑
tablishes the COMPU‑RIP software was subject to reasonable efforts to
maintain its secrecy. As to the question of reverse engineering, the affi‑
davits indicate that it is practically impossible to make any modification
to the COMPU‑RIP software using only the object code contained in the
PROMS. We find the evidence presented establishes the COMPU‑RIP
software was not ”readily ascertainable” through reverse engineering.

B Patent

Alice Corp. v. CLS Bank Int'l
134 S. Ct. 2347 (2014)

The patents at issue in this case disclose a computer‑implemented
scheme for mitigating ”settlement risk” (i.e., the risk that only one party
to a financial transaction will pay what it owes) by using a third‑party
intermediary. The question presented is whether these claims are patent
eligible under 35 U.S.C. § 101, or are instead drawn to a patent‑ineligible
abstract idea. We hold that the claims at issue are drawn to the abstract
idea of intermediated settlement, and that merely requiring generic
computer implementation fails to transform that abstract idea into a
patent‑eligible invention.

I

A

Petitioner Alice Corporation is the assignee of several patents that dis‑
close schemes to manage certain forms of financial risk. According to the
specification largely shared by the patents, the invention ”enabl[es] the
management of risk relating to specified, yet unknown, future events.”

B. PATENT 4

2. Bilski v. Kappos (“Bilski v. Kappos”),
561 U.S. 593 (2010).

3. Diamond v. Diehr, 450 U.S. 175 (1981).

The specification further explains that the ”invention relates to meth‑
ods and apparatus, including electrical computers and data processing
systems applied to financial matters and risk management.”

The claims at issue relate to a computerized scheme for mitigat‑
ing ”settlement risk” – i.e., the risk that only one party to an agreed‑
upon financial exchange will satisfy its obligation. In particular, the
claims are designed to facilitate the exchange of financial obligations
between two parties by using a computer system as a third‑party inter‑
mediary. The intermediary creates ”shadow” credit and debit records
(i.e., account ledgers) that mirror the balances in the parties’ real‑world
accounts at ”exchange institutions” (e.g., banks). The intermediary up‑
dates the shadow records in real time as transactions are entered, al‑
lowing only those transactions for which the parties’ updated shadow
records indicate sufficient resources to satisfy their mutual obligations.
At the end of the day, the intermediary instructs the relevant financial
institutions to carry out the ”permitted” transactions in accordance with
the updated shadow records, thus mitigating the risk that only one party
will perform the agreed‑upon exchange.

In sum, the patents in suit claim (1) the foregoing method for ex‑
changing obligations (the method claims), (2) a computer system con‑
figured to carry out the method for exchanging obligations (the sys‑
tem claims), and (3) a computer‑readable medium containing program
code for performing the method of exchanging obligations (the media
claims). All of the claims are implemented using a computer; the sys‑
tem and media claims expressly recite a computer, and the parties have
stipulated that the method claims require a computer as well.

II
Section 101 of the Patent Act defines the subject matter eligible for patent
protection. We have long held that this provision contains an important
implicit exception: Laws of nature, natural phenomena, and abstract
ideas are not patentable.

We have described the concern that drives this exclusionary prin‑
ciple as one of pre‑emption. See, e.g.,2 (upholding the patent ”would
pre‑empt use of this approach in all fields, and would effectively grant
a monopoly over an abstract idea”). Laws of nature, natural phenom‑
ena, and abstract ideas are the basic tools of scientific and technologi‑
cal work. Monopolization of those tools through the grant of a patent
might tend to impede innovation more than it would tend to promote
it,” thereby thwarting the primary object of the patent laws. We have
repeatedly emphasized this concern that patent law not inhibit further
discovery by improperly tying up the future use of these building blocks
of human ingenuity.

At the same time, we tread carefully in construing this exclusionary
principle lest it swallow all of patent law. At some level, all inventions
embody, use, reflect, rest upon, or apply laws of nature, natural phe‑
nomena, or abstract ideas. Thus, an invention is not rendered ineligible
for patent simply because it involves an abstract concept. See3 Applica‑

B. PATENT 5

4. Gottschalk v. Benson, 409 U. S. 63
(1972).

5. Parker v. Flook, 437 U.S. 584 (1978).

tions of such concepts to a new and useful end remain eligible for patent
protection.

Accordingly, in applying the S 101 exception, we must distinguish
between patents that claim the building blocks of human ingenuity and
those that integrate the building blocks into something more, thereby
transforming them into a patent‑eligible invention, The former would
risk disproportionately tying up the use of the underlying ideas, and are
therefore ineligible for patent protection. The latter pose no compara‑
ble risk of pre‑emption, and therefore remain eligible for the monopoly
granted under our patent laws.

III
InMayoCollaborative v. Prometheus Labs, we set forth a framework for dis‑
tinguishing patents that claim laws of nature, natural phenomena, and
abstract ideas from those that claim patent‑eligible applications of those
concepts. First, we determine whether the claims at issue are directed to
one of those patent‑ineligible concepts. If so, we then ask, what else is
there in the claims before us? To answer that question, we consider the
elements of each claim both individually and as an ordered combina‑
tion to determine whether the additional elements transform the nature
of the claim into a patent‑eligible application. We have described step
two of this analysis as a search for an ”inventive concept” – i.e., an el‑
ement or combination of elements that is sufficient to ensure that the
patent in practice amounts to significantly more than a patent upon the
ineligible concept itself.

A

We must first determine whether the claims at issue are directed to a
patent‑ineligible concept. We conclude that they are: These claims are
drawn to the abstract idea of intermediated settlement.

The ”abstract ideas” category embodies the longstanding rule that
an idea of itself is not patentable. In4 for example, this Court rejected as
ineligible patent claims involving an algorithm for converting binary‑
coded decimal numerals into pure binary form, holding that the claimed
patent was ”in practical effect a patent on the algorithm itself.” And in5

we held that a mathematical formula for computing ”alarm limits” in a
catalytic conversion process was also a patent‑ineligible abstract idea.

We most recently addressed the category of abstract ideas in Bil‑
ski v. Kappos (“Bilski v. Kappos”). The claims at issue in Bilski v. Kappos
described a method for hedging against the financial risk of price fluc‑
tuations. Claim 1 recited a series of steps for hedging risk, including: (1)
initiating a series of financial transactions between providers and con‑
sumers of a commodity; (2) identifying market participants that have a
counterrisk for the same commodity; and (3) initiating a series of trans‑
actions between those market participants and the commodity provider
to balance the risk position of the first series of consumer transactions.
Claim 4 put the concept articulated in claim 1 into a simple mathemati‑
cal formula. The remaining claims were drawn to examples of hedging

B. PATENT 6

6. ”Perhaps the most striking feature of
the opinion is its focus on the re‑
quirement for an ‘inventive concept.’
This choice of terminology is per‑
haps unfortunate, as it closely re‑
sembles the terminology of ‘inven‑
tive step’ that is used in much of
the world to designate the require‑
ment for a patentable invention to be
a significant advance over the prior
art. Typically the ‘inventive step’ re‑
quirement, which is found in many
patent systems, including as Art. 52
of the European Patent Convention,
is considered equivalent to the ‘non‑
obviousness’ requirement found in
Sec. 103 of the American patent
statute, rather than equivalent to any
U.S. subject matter provision.” Dan
L. Burk, The Inventive Concept in Alice
Corp. v. CLS Bank Int’l., ₄₅ IIC ₈₆₅ ₍₂₀₁₄₎.

in commodities and energy markets.
All members of the Court agreed that the patent at issue in Bilski

v. Kappos claimed an abstract idea. Specifically, the claims described
the basic concept of hedging, or protecting against risk. The Court ex‑
plained that ”hedging is a fundamental economic practice long preva‑
lent in our system of commerce and taught in any introductory finance
class.” The concept of hedging as recited by the claims in suit was there‑
fore a patent‑ineligible abstract idea, just like the algorithms at issue in
Gottschalk v. Benson and Parker v. Flook.

On their face, the claims before us are drawn to the concept of in‑
termediated settlement, i.e., the use of a third party to mitigate settle‑
ment risk. Like the risk hedging in Bilski v. Kappos, the concept of inter‑
mediated settlement is a fundamental economic practice long prevalent
in our system of commerce. The use of a third‑party intermediary (or
”clearing house”) is also a building block of the modern economy. Thus,
intermediated settlement, like hedging, is an ”abstract idea” beyond the
scope of § 101.

B

Because the claims at issue are directed to the abstract idea of interme‑
diated settlement, we turn to the second step in Mayo’s framework. We
conclude that the method claims, which merely require generic com‑
puter implementation, fail to transform that abstract idea into a patent‑
eligible invention.

1

At Mayo step two, we must examine the elements of the claim to de‑
termine whether it contains an ”inventive concept” sufficient to ”trans‑
form” the claimed abstract idea into a patent‑eligible application.6 A
claim that recites an abstract idea must include ”additional features” to
ensure ”that the claim is more than a drafting effort designed to monop‑
olize the abstract idea.”

The introduction of a computer into the claims does not alter the
analysis at Mayo step two. In Gottschalk, for example, we considered
a patent that claimed an algorithm implemented on a general‑purpose
digital computer. Because the algorithm was an abstract idea, the claim
had to supply a new and useful application of the idea in order to be
patent eligible. But the computer implementation did not supply the
necessary inventive concept; the process could be carried out in existing
computers long in use. We accordingly held that simply implementing
a mathematical principle on a physical machine, namely a computer, is
not a patentable application of that principle.

Parker is to the same effect. There, we examined a computerized
method for using a mathematical formula to adjust alarm limits for cer‑
tain operating conditions (e.g., temperature and pressure) that could
signal inefficiency or danger in a catalytic conversion process. Once
again, the formula itself was an abstract idea and the computer imple‑

B. PATENT 7

mentation was purely conventional. In holding that the process was
patent ineligible, we rejected the argument that implementing a princi‑
ple in some specific fashion will automatically fall within the patentable
subject matter of § 101. Thus, Parker stands for the proposition that the
prohibition against patenting abstract ideas cannot be circumvented by
attempting to limit the use of the idea to a particular technological en‑
vironment.

In Diamond v. Diehr, by contrast, we held that a computer‑
implemented process for curing rubber was patent eligible, but not be‑
cause it involved a computer. The claim employed a well‑known mathe‑
matical equation, but it used that equation in a process designed to solve
a technological problem in conventional industry practice. The inven‑
tion in Diamond used a thermocouple to record constant temperature
measurements inside the rubber mold – something the industry had not
been able to obtain. The temperature measurements were then fed into a
computer, which repeatedly recalculated the remaining cure time by us‑
ing the mathematical equation. These additional steps transformed the
process into an inventive application of the formula. In other words,
the claims in Diamond were patent eligible because they improved an
existing technological process, not because they were implemented on
a computer.

These cases demonstrate that the mere recitation of a generic com‑
puter cannot transform a patent‑ineligible abstract idea into a patent‑
eligible invention. Stating an abstract idea ”while adding the words
’apply it’” is not enough for patent eligibility. Mayo. Nor is limiting the
use of an abstract idea to a particular technological environment. Stat‑
ing an abstract idea while adding the words ”apply it with a computer”
simply combines those two steps, with the same deficient result. Thus,
if a patent’s recitation of a computer amounts to a mere instruction to
implement an abstract idea on a computer, that addition cannot impart
patent eligibility.

The fact that a computer necessarily exists in the physical, rather
than purely conceptual, realm, is beside the point. There is no dispute
that a computer is a tangible system (in § 101 terms, a ”machine”), or that
many computer‑implemented claims are formally addressed to patent‑
eligible subject matter. But if that were the end of the § 101 inquiry, an
applicant could claim any principle of the physical or social sciences
by reciting a computer system configured to implement the relevant
concept. Such a result would make the determination of patent eligi‑
bility depend simply on the draftsman’s art, thereby eviscerating the
rule that laws of nature, natural phenomena, and abstract ideas are not
patentable.

2

The representative method claim in this case recites the following steps:
(1) ”creating” shadow records for each counterparty to a transaction;
(2) ”obtaining” start‑of‑day balances based on the parties’ real‑world
accounts at exchange institutions; (3) ”adjusting” the shadow records

B. PATENT 8

as transactions are entered, allowing only those transactions for which
the parties have sufficient resources; and (4) issuing irrevocable end‑of‑
day instructions to the exchange institutions to carry out the permitted
transactions. Petitioner principally contends that the claims are patent
eligible because these steps ”require a substantial and meaningful role
for the computer.” As stipulated, the claimed method requires the use of
a computer to create electronic records, track multiple transactions, and
issue simultaneous instructions; in other words, the computer is itself
the intermediary.

In light of the foregoing, the relevant question is whether the claims
here do more than simply instruct the practitioner to implement the ab‑
stract idea of intermediated settlement on a generic computer. They do
not.

Taking the claim elements separately, the function performed by
the computer at each step of the process is purely conventional. Using
a computer to create and maintain ”shadow” accounts amounts to elec‑
tronic recordkeeping – one of the most basic functions of a computer.
The same is true with respect to the use of a computer to obtain data,
adjust account balances, and issue automated instructions; all of these
computer functions are well‑understood, routine, conventional activi‑
ties previously known to the industry. In short, each step does no more
than require a generic computer to perform generic computer functions.

Considered as an ordered combination, the computer components
of petitioner’s method add nothing that is not already present when
the steps are considered separately. Viewed as a whole, petitioner’s
method claims simply recite the concept of intermediated settlement as
performed by a generic computer. The method claims do not, for exam‑
ple, purport to improve the functioning of the computer itself. Nor do
they effect an improvement in any other technology or technical field.
Instead, the claims at issue amount to ”nothing significantly more” than
an instruction to apply the abstract idea of intermediated settlement us‑
ing some unspecified, generic computer. Under our precedents, that is
not enough to transform an abstract idea into a patent‑eligible invention.

C

Petitioner’s claims to a computer system and a computer‑readable
medium fail for substantially the same reasons. Petitioner conceded be‑
low that its media claims rise or fall with its method claims. As to its
system claims, petitioner emphasizes that those claims recite ”specific
hardware” configured to perform ”specific computerized functions.”
But what petitioner characterizes as specific hardware – a ”data pro‑
cessing system” with a ”communications controller” and ”data storage
unit,” for example – is purely functional and generic. Nearly every
computer will include a ”communications controller” and ”data storage
unit” capable of performing the basic calculation, storage, and transmis‑
sion functions required by the method claims. As a result, none of the
hardware recited by the system claims offers a meaningful limitation

C. COPYRIGHT 9

7. Is a computer itself patentable?

8. The facts here are drawn primarily
from the Court of Appeals’ opinion,
which immediately follows.

1. Oracle acquired Sun in 2010.

beyond generally linking the use of the method to a particular techno‑
logical environment,7 that is, implementation via computers.

Put another way, the system claims are no different from the
method claims in substance. The method claims recite the abstract idea
implemented on a generic computer; the system claims recite a hand‑
ful of generic computer components configured to implement the same
idea. This Court has long warned against interpreting § 101 in ways that
make patent eligibility depend simply on the draftsman’s art. Holding
that the system claims are patent eligible would have exactly that result.

Because petitioner’s system and media claims add nothing of sub‑
stance to the underlying abstract idea, we hold that they too are patent
ineligible under § 101.

C Copyright

Oracle America, Inc. v. Google Inc.
872 F. Supp. 2d 974 (N.D. Cal. 2012)

This action was the first of the so‑called ”smartphone war” cases tried
to a jury. This order includes the findings of fact and conclusions of
law on a central question tried simultaneously to the judge, namely the
extent to which, if at all, certain replicated elements of the structure, se‑
quence and organization of the Java application programming interface
are protected by copyright.8

Sun Microsystems, Inc. (”Sun”) developed the Java ”platform” for
computer programming and released it in 1996.1 The aim was to re‑
lieve programmers from the burden of writing different versions of their
computer programs for different operating systems or devices. The Java
platform, through the use of a virtual machine, enabled software devel‑
opers to write programs that were able to run on different types of com‑
puter hardware without having to rewrite them for each different type.
With Java, a software programmer could ”write once, run anywhere.”

The Java virtual machine (”JVM”) plays a central role in the overall
Java platform. The Java programming language itself – which includes
words, symbols, and other units, together with syntax rules for using
them to create instructions – is the language in which a Java programmer
writes source code, the version of a program that is in a human‑readable
language. For the instructions to be executed, they must be converted
(or compiled) into binary machine code (object code) consisting of 0s
and Is understandable by the particular computing device. In the Java
system, source code is first converted into ”bytecode,” an intermediate
form, before it is then converted into binary machine code by the Java
virtual machine that has been designed for that device.

Sun wrote a number of ready‑to‑use Java programs to perform com‑
mon computer functions and organized those programs into groups
it called ”packages.” These packages, which are the application pro‑
gramming interfaces at issue in this appeal, allow programmers to
use the prewritten code to build certain functions into their own pro‑

C. COPYRIGHT 10

grams, rather than write their own code to perform those functions from
scratch. They are shortcuts. Sun called the code for a specific operation
(function) a ”method.” It defined ”classes” so that each class consists
of specified methods plus variables and other elements on which the
methods operate. To organize the classes for users, then, it grouped
classes (along with certain related ”interfaces”) into ”packages.” The
parties have not disputed the district court’s analogy: Oracle’s collec‑
tion of API packages is like a library, each package is like a bookshelf in
the library, each class is like a book on the shelf, and each method is like
a how‑to chapter in a book.

The original Java Standard Edition Platform (”Java SE”) included
eight packages of pre‑written programs. The district court found,
and Oracle concedes to some extent, that three of those packages –
java.lang.java.io, and java.util – were ”core” packages, meaning that
programmers using the Java language had to use them in order to make
any worthwhile use of the language. By 2008, the Java platform had
more than 6,000 methods making up more than 600 classes grouped
into 166 API packages. There are 37 Java API packages at issue in this
appeal, three of which are the core packages identified by the district
court. These packages contain thousands of individual elements, in‑
cluding classes, subclasses, methods, and interfaces.

Every package consists of two types of source code — what the par‑
ties call (1) declaring code; and (2) implementing code. Declaring code
is the expression that identifies the prewritten function and is some‑
times referred to as the ”declaration” or ”header.” As the district court
explained, the ”main point is that this header line of code introduces
the method body and specifies very precisely the inputs, name and
other functionality.” The expressions used by the programmer from the
declaring code command the computer to execute the associated imple‑
menting code, which gives the computer the step‑by‑step instructions
for carrying out the declared function.

For example, one of the Java API packages at issue is ”java. lang.”
Within that package is a class called ”math,” and within ”math” there
are several methods, including one that is designed to find the larger of
two numbers: ”max.” To invoke this method from another program (or
class), the following call could be included in the program:

int a = java.lang.Math.max (2, 3);

Upon reaching this statement, the computer would go and find the max
method under the Math class in the java.lang package, input ’2’ and ’3’
as arguments, and then return a ’3,’ which would then be set as the value
of ’a.’ The declaration for the ”max” method, as defined for integers, is

public static int max (int x, int y) {

The word ”public” means that other programs can call on it. (If this
instead says ”private,” then it can only be accessed by other methods
inside the same class.) The word ”static” means that the method can

C. COPYRIGHT 11

be invoked without creating an instance of the class. (If this instead
is an instance method, then it would always be invoked with respect
to an object.) The word ”int” means that an integer is returned by
the method. (Other alternatives are ”boolean,” ”char,” and ”String”
which respectively mean ”true/false,” ”single character,” and ”character
string.”) Each of these three parameters is drawn from a short menu of
possibilities, each possibility corresponding to a very specific function‑
ality. The word ”max” is a name and any name (other than a reserved
word [i.e, a few names like ”int” and ”public” that have specific and
rigidly defined roles in the Java language]) could have been used.. The
phrase ”(int x, int y)” identifies the arguments that must be passed into
the method, stating that they will be in integer form. The ”x” and the ”y”
could be ”a” and ”b” or ”arg1” and ”arg2,” so there is a degree of creativ‑
ity in naming the arguments. Finally, ”{” is the beginning marker that
tells the compiler that the method body is about to follow. The marker
is mandatory.

Although Oracle owns the copyright on Java SE and the API pack‑
ages, it offers three different licenses to those who want to make use of
them. The first is the General Public License, which is free of charge
and provides that the licensee can use the packages – both the declaring
and implementing code – but must ”contribute back” its innovations to
the public. This arrangement is referred to as an ”open source” license.
The second option is the Specification License, which provides that the
licensee can use the declaring code and organization of Oracle’s API
packages but must write its own implementing code. The third option
is the Commercial License, which is for businesses that want to use and
customize the full Java code in their commercial products and keep their
code secret. Oracle offers the Commercial License in exchange for roy‑
alties. To maintain Java’s ”write once, run anywhere” motto, the Spec‑
ification and Commercial Licenses require that the licensees’ programs
pass certain tests to ensure compatibility with the Java platform.

The accused product is Android, a software platform that was
designed for mobile devices and competes with Java in that market.
Google acquired Android, Inc. in 2005 as part of a plan to develop a
smartphone platform. Later that same year, Google and Sun began dis‑
cussing the possibility of Google taking a license to use and to adapt the
entire Java platform for mobile devices. They also discussed a possi‑
ble co‑development partnership deal with Sun under which Java tech‑
nology would become an open‑source part of the Android platform,
adapted for mobile devices. The parties negotiated for months but were
unable to reach an agreement. The point of contention between the par‑
ties was Google’s refusal to make the implementation of its programs
compatible with the Java virtual machine or interoperable with other
Java programs. Because Sun/Oracle found that position to be anathema
to the ”write once, run anywhere” philosophy, it did not grant Google
a license to use the Java API packages.

When the parties’ negotiations reached an impasse, Google decided
to use the Java programming language to design its own virtual ma‑

C. COPYRIGHT 12

9. Wait. Why is everyone free to pro‑
gram in Java? Is everyone free to pro‑
gram in Java?

chine – the Dalvik virtual machine (”Dalvik VM”) – and ”to write its
own implementations for the functions in the Java API that were key to
mobile devices.” Google developed the Android platform, which grew
to include 168 API packages – 37 of which correspond to the Java API
packages at issue in this appeal.

With respect to the 37 packages at issue, ”Google believed Java ap‑
plication programmers would want to find the same 37 sets of function‑
alities in the new Android system callable by the same names as used
in Java.” To achieve this result, Google copied the declaring source code
from the 37 Java API packages verbatim, inserting that code into parts
of its Android software. In doing so, Google copied the elaborately or‑
ganized taxonomy of all the names of methods, classes, interfaces, and
packages – the ”overall system of organized names – covering 37 pack‑
ages, with over six hundred classes, with over six thousand methods.
The parties and district court referred to this taxonomy of expressions
as the ”structure, sequence, and organization” or ”SSO” of the 37 pack‑
ages. It is undisputed, however, that Google wrote its own implement‑
ing code [with some exceptions not here relevant].

Google released the Android platform in 2007, and the first An‑
droid phones went on sale the following year. Oracle indicated at oral
argument that Android phones contain copies of the accused portions of
the Android software. Android smartphones rapidly grew in popular‑
ity and now comprise a large share of the United States market. Google
provides the Android platform free of charge to smartphone manufac‑
turers and receives revenue when customers use particular functions on
the Android phone. Although Android uses the Java programming lan‑
guage, it is undisputed that Android is not generally Java compatible.
As Oracle explains, ”Google ultimately designed Android to be incom‑
patible with the Java platform, so that apps written for one will not work
on the other.”

APPLICATION OF CONTROLLING LAW TO CONTROLLING FACTS
All agree that everyone was and remains free to program in the Java
language itself.9 All agree that Google was free to use the Java language
to write its own API. While Google took care to provide fresh line‑by‑
line implementations (the 97 percent), it generally replicated the overall
name organization and functionality of 37 packages in the Java API (the
three percent). The main issue addressed herein is whether this violated
the Copyright Act and more fundamentally whether the replicated ele‑
ments were copyrightable in the first place.

This leads to the first holding central to this order and it concerns
the method level. As long as the specific code written to implement a
method is different, anyone is free under the Copyright Act to write his
or her own method to carry out exactly the same function or specifica‑
tion of any and all methods used in the Java API. Contrary to Oracle,
copyright law does not confer ownership over any and all ways to im‑
plement a function or specification, no matter how creative the copy‑
righted implementation or specification may be. The Act confers own‑

C. COPYRIGHT 13

ership only over the specific way in which the author wrote out his ver‑
sion. Others are free to write their own implementation to accomplish
the identical function, for, importantly, ideas, concepts and functions
cannot be monopolized by copyright.

To return to our example, one method in the Java API carries out the
function of comparing two numbers and returning the greater. Google
– and everyone else in the world – was and remains free to write its
own code to carry out the identical function so long as the implementing
code in the method body is different from the copyrighted implemen‑
tation. This is a simple example, but even if a method resembles higher
mathematics, everyone is still free to try their hand at writing a differ‑
ent implementation, meaning that they are free to use the same inputs
to derive the same outputs so long as the implementation in between is
their own.

Much of Oracle’s evidence at trial went to show that the design of
methods in an API was a creative endeavor. Of course, that is true. In‑
venting a new method to deliver a new output can be creative, even
inventive, including the choices of inputs needed and outputs returned.
But such inventions – at the concept and functionality level – are pro‑
tectable only under the Patent Act. Under the Copyright Act, no matter
how creative or imaginative a Java method specification may be, the en‑
tire world is entitled to use the same method specification (inputs, out‑
puts, parameters) so long as the line‑by‑line implementations are differ‑
ent. To repeat the Second Circuit’s phrasing, ”there might be a myriad of
ways in which a programmer may express the idea embodied in a given
subroutine.” Computer Associates Intern., Inc. v. Altai, Inc. The method
specification is the idea. The method implementation is the expression.
No one may monopolize the idea.

To carry out any given function, the method specification as set
forth in the declaration must be identical under the Java rules (save only
for the choices of argument names). Any other declaration would carry
out some other function. The declaration requires precision. Signifi‑
cantly, when there is only one way to write something, the merger doc‑
trine bars anyone from claiming exclusive copyright ownership of that
expression. Therefore, there can be no copyright violation in using the
identical declarations. Nor can there be any copyright violation due to
the name given to the method (or to the arguments), for under the law,
names and short phrases cannot be copyrighted.

In sum, Google and the public were and remain free to write their
own implementations to carry out exactly the same functions of all
methods in question, using exactly the same method specifications and
names. Therefore, at the method level – the level where the heavy lift‑
ing is done – Google has violated no copyright, it being undisputed that
Google’s implementations are different.

* * *

Even so, the second major copyright question is whether Google was
and remains free to group its methods in the same way as in Java, that

C. COPYRIGHT 14

is, to organize its Android methods under the same class and package
scheme as in Java. For example, the Math classes in both systems have a
method that returns a cosine, another method that returns the larger of
two numbers, and yet another method that returns logarithmic values,
and so on. As Oracle notes, the rules of Java did not insist that these
methods be grouped together in any particular class. Google could have
placed its trigonometric function (or any other function) under a class
other than Math class. Oracle is entirely correct that the rules of the Java
language did not require that the same grouping pattern (or even that
they be grouped at all, for each method could have been placed in a
stand‑alone class). There was nothing in the rules of the Java language
that required that Google replicate the same groupings even if Google
was free to replicate the same functionality.

The main answer to this argument is that the overall scheme of file
name organization is also a command structure for a system or method
of operation of the application programming interface. The commands
are (and must be) in the form

java.package.Class.method()

and each calls into action a pre‑assigned function.
That a system or method of operation has thousands of commands

arranged in a creative taxonomy does not change its character as a
method of operation. Yes, it is creative. Yes, it is original. But it is
nevertheless a command structure, a system or method of operation – a
long hierarchy of over six thousand commands to carry out pre‑assigned
functions. For that reason, it cannot receive copyright protection.

* * *

Interoperability sheds further light on the character of the command
structure as a system or method of operation. Surely, millions of lines
of code had been written in Java before Android arrived. These pro‑
grams necessarily used the java.package.Class.method() command for‑
mat. These programs called on all or some of the specific 37 packages
at issue and necessarily used the command structure of names at issue.
Such code was owned by the developers themselves, not by Oracle. In
order for at least some of this code to run on Android, Google was required to
provide the same java.package.Class.method() command system using the same
names with the same ”taxonomy” and with the same functional specifications.
Google replicated what was necessary to achieve a degree of interop‑
erability – but no more, taking care, as said before, to provide its own
implementations.

That interoperability is at the heart of the command structure is il‑
lustrated by Oracle’s preoccupation with what it calls ”fragmentation,”
meaning the problem of having imperfect interoperability among plat‑
forms. When this occurs, Java‑based applications may not run on the
incompatible platforms. For example, Java‑based code using the repli‑
cated parts of the 37 API packages will run on Android but will not if a

C. COPYRIGHT 15

10. Why the Federal Circuit? Because
the case originally included patent
claims, giving the Federal Circuit ap‑
pellate jurisdiction. Note that the Fed‑
eral Circuit here is technically apply‑
ing Ninth Circuit law.

11. Atari Games Corp. v. Nintendo of
Am. Inc., 975 F.2d 832 (Fed. Cir. 1992).

38th package is needed. Such imperfect interoperability leads to a ”frag‑
mentation” – a Balkanization – of platforms, a circumstance which Sun
and Oracle have tried to curb via their licensing programs. In this liti‑
gation, Oracle has made much of this problem, at times almost leaving
the impression that if only Google had replicated all 166 Java API pack‑
ages, Oracle would not have sued. While fragmentation is a legitimate
business consideration, it begs the question whether or not a license was
required in the first place to replicate some or all of the command struc‑
ture. (This is especially so inasmuch as Android has not carried the Java
trademark, and Google has not held out Android as fully compatible.)
The immediate point is this: fragmentation, imperfect interoperability,
and Oracle’s angst over it illustrate the character of the command struc‑
ture as a functional system or method of operation.

Oracle America, Inc. v. Google Inc.
750 F.3d 1339 (Fed. Cir. 2014)

We are mindful that the application of copyright law in the computer
context is often a difficult task. On this record, however, we find that
the district court failed to distinguish between the threshold question
of what is copyrightable – which presents a low bar – and the scope of
conduct that constitutes infringing activity.10 The court also erred by
importing fair use principles, including interoperability concerns, into
its copyrightability analysis. For the reasons that follow, we conclude
that the declaring code and the structure, sequence, and organization of
the 37 Java API packages are entitled to copyright protection.

1. Declaring Source Code

Under the merger doctrine, a court will not protect a copyrighted work
from infringement if the idea contained therein can be expressed in only
one way. For computer programs, this means that when specific parts of
the code, even though previously copyrighted, are the only and essential
means of accomplishing a given task, their later use by another will not
amount to infringement.

In11 for example, Nintendo designed a program – the 10NES – to
prevent its video game system from accepting unauthorized game car‑
tridges. Nintendo ”chose arbitrary programming instructions and ar‑
ranged them in a unique sequence to create a purely arbitrary data
stream” which ”serves as the key to unlock the NES.” Because Nintendo
produced expert testimony ”showing a multitude of different ways to
generate a data stream which unlocks the NES console,” we concluded
that Nintendo’s specific choice of code did not merge with the process.

The evidence showed that Oracle had unlimited options as to the
selection and arrangement of the 7000 lines Google copied. Using the
district court’s ”java.lang. Math.max” example, Oracle explains that
the developers could have called it any number of things, including
”Math.maximum” or ”Arith.larger.” This was not a situation where Or‑
acle was selecting among preordained names and phrases to create its

C. COPYRIGHT 16

7. The district court did not find merger
with respect to the structure, se‑
quence, and organization of Ora‑
cle’s Java API packages. Nor could
it, given the court’s recognition that
there were myriad ways in which the
API packages could have been orga‑
nized.

12. ”It was the best of times, it was the
worst of times, it was the age of wis‑
dom, it was the age of foolishness,
it was the epoch of belief, it was the
epoch of incredulity, it was the sea‑
son of Light, it was the season of Dark‑
ness, it was the spring of hope, it was
the winter of despair, we had every‑
thing before us, we had nothing be‑
fore us, we were all going direct to
Heaven, we were all going direct the
other way – in short, the period was so
far like the present period, that some
of its noisiest authorities insisted on
its being received, for good or for evil,
in the superlative degree of compari‑
son only.” Charles Dickens, A Tale of
Two Cities

13. ”Mr. Burns: This is a thousand mon‑
keys working at a thousand typewrit‑
ers. Soon, they’ll have written the
greatest novel known to man. Let’s
see ... ’It was the best of times, it
was the blurst of times!’ You stupid
monkey!” The Simpsons, ”Last Exit to
Springfield” (episode 9F15).

14. Lotus Dev. Corp. v. Borland Int’l, Inc.,
49 F.3d 807 (1st Cir. 1995).

packages. As the district court recognized, moreover, ”the Android
method and class names could have been different from the names of
their counterparts in Java and still have worked.” Because alternative
expressions were available, there is no merger.

We further find that the district court erred in focusing its merger
analysis on the options available to Google at the time of copying. It is
well‑established that copyrightability and the scope of protectable ac‑
tivity are to be evaluated at the time of creation, not at the time of in‑
fringement. The focus is, therefore, on the options that were available
to Sun/Oracle at the time it created the API packages. Of course, once
Sun/Oracle created ”java.lang.Math.max,” programmers who want to
use that particular package have to call it by that name. But nothing pre‑
vented Google from writing its own declaring code, along with its own
implementing code, to achieve the same result. In such circumstances,
the chosen expression simply does not merge with the idea being ex‑
pressed.7

The district court is correct that words and short phrases such as
names, titles, and slogans are not subject to copyright protection. The
court failed to recognize, however, that the relevant question for copy‑
rightability purposes is not whether the work at issue contains short
phrases – as literary works often do – but, rather, whether those phrases
are creative. And, by dissecting the individual lines of declaring code
at issue into short phrases, the district court further failed to recognize
that an original combination of elements can be copyrightable.

By analogy, the opening of Charles Dickens’ A Tale of Two Cities is
12 13 nothing but a string of short phrases. Yet no one could contend
that this portion of Dickens’ work is unworthy of copyright protection
because it can be broken into those shorter constituent components. The
question is not whether a short phrase or series of short phrases can be
extracted from the work, but whether the manner in which they are used
or strung together exhibits creativity.

Although the district court apparently focused on individual lines
of code, Oracle is not seeking copyright protection for a specific short
phrase or word. Instead, the portion of declaring code at issue is 7,000
lines, and Google’s own ”Java guru” conceded that there can be ”cre‑
ativity and artistry even in a single method declaration.” Because Ora‑
cle exercised creativity in the selection and arrangement of the method
declarations when it created the API packages and wrote the relevant
declaring code, they contain protectable expression that is entitled to
copyright protection.

2. The Structure, Sequence, and Organization of the API Packages

The district court found that the SSO of the Java API packages is cre‑
ative and original, but nevertheless held that it is a system or method of
operation and, therefore, cannot be copyrighted. In reaching this con‑
clusion, the district court seems to have relied upon language contained
in a First Circuit decision,14

C. COPYRIGHT 17

In Lotus Development Corp. v. Borland International, Inc., it was undis‑
puted that the defendant copied the menu command hierarchy and in‑
terface from Lotus 1‑2‑3, a computer spreadsheet program that enables
users to perform accounting functions electronically on a computer. The
menu command hierarchy referred to a series of commands – such as
”Copy,” ”Print,” and ”Quit” – which were arranged into more than 50
menus and submenus. Although the defendant did not copy any Lo‑
tus source code, it copied the menu command hierarchy into its rival
program. The question before the court was whether a computer menu
command hierarchy is copyrightable subject matter.

Although it accepted the district court’s finding that Lotus develop‑
ers made some expressive choices in selecting and arranging the com‑
mand terms, the First Circuit found that the command hierarchy was
not copyrightable because, among other things, it was a ”method of op‑
eration” under Section 102(b). In reaching this conclusion, the court de‑
fined a ”method of operation” as ”the means by which a person oper‑
ates something, whether it be a car, a food processor, or a computer.”
Because the Lotus menu command hierarchy provided ”the means by
which users control and operate Lotus 1‑2‑3,” it was deemed unpro‑
tectable. For example, if users wanted to copy material, they would use
the ”Copy” command and the command terms would tell the computer
what to do. According to the Lotus court, the ”fact that Lotus developers
could have designed the Lotus menu command hierarchy differently is
immaterial to the question of whether it is a ‘method of operation.’ The
court further indicated that, ”[i]f specific words are essential to oper‑
ating something, then they are part of a ‘method of operation’ and, as
such, are unprotectable.”

On appeal, Oracle argues that the district court’s reliance on Lotus
Development is misplaced because it is distinguishable on its facts and is
inconsistent with Ninth Circuit law. We agree. First, while the defen‑
dant in Lotus did not copy any of the underlying code, Google concedes
that it copied portions of Oracle’s declaring source code verbatim. Sec‑
ond, the Lotus Development court found that the commands at issue there
(copy, print, etc.) were not creative, but it is undisputed here that the
declaring code and the structure and organization of the API packages
are both creative and original. Finally, while the court in Lotus Devel‑
opment found the commands at issue were ”essential to operating” the
system, it is undisputed that – other than perhaps as to the three core
packages – Google did not need to copy the structure, sequence, and or‑
ganization of the Java API packages to write programs in the Java lan‑
guage.

More importantly, however, the Ninth Circuit has not adopted the
court’s ”method of operation” reasoning in Lotus Development, and we
conclude that it is inconsistent with binding precedent. Specifically, we
find that Lotus Development is inconsistent with Ninth Circuit case law
recognizing that the structure, sequence, and organization of a com‑
puter program is eligible for copyright protection where it qualifies as
an expression of an idea, rather than the idea itself. We find, moreover,

C. COPYRIGHT 18

12. This analogy by the district court is
meaningful because taxonomies, in
varying forms, have generally been
deemed copyrightable. See, e.g., Prac‑
tice Management. Info. Corp. v. Am.
Med. Ass’n

15. Sony Comput. Entm’t v. Connectix
Corp., 203 F.3d 596 (9th Cir. 2000).

that the hard and fast rule set down in Lotus Development and employed
by the district court here – i.e., that elements which perform a function
can never be copyrightable – is at odds with the Ninth Circuit’s endorse‑
ment of the abstraction‑filtration‑comparison analysis.

Here, the district court recognized that the SSO ”resembles a taxon‑
omy,” but found that ”it is nevertheless a command structure, a system
or method of operation — a long hierarchy of over six thousand com‑
mands to carry out pre‑assigned functions.”12 In other words, the court
concluded that, although the SSO is expressive, it is not copyrightable
because it is also functional. The problem with the district court’s ap‑
proach is that computer programs are by definition functional – they are
all designed to accomplish some task. If we were to accept the district
court’s suggestion that a computer program is uncopyrightable simply
because it ”carr[ies] out pre‑assigned functions,” no computer program
is protectable. That result contradicts Congress’s express intent to pro‑
vide copyright protection to computer programs, as well as binding
Ninth Circuit case law finding computer programs copyrightable, de‑
spite their utilitarian or functional purpose.

On appeal, Oracle does not — and concedes that it cannot — claim
copyright in the idea of organizing functions of a computer program or
in the ”package‑class‑method” organizational structure in the abstract.
Instead, Oracle claims copyright protection only in its particular way of
naming and organizing each of the 37 Java API packages. Oracle recog‑
nizes, for example, that it ”cannot copyright the idea of programs that
open an internet connection,” but ”it can copyright the precise strings
of code used to do so, at least so long as other language is available to
achieve the same function.” Thus, Oracle concedes that Google and oth‑
ers could employ the Java language – much like anyone could employ
the English language to write a paragraph without violating the copy‑
rights of other English language writers. And, that Google may employ
the ”package‑class‑method” structure much like authors can employ the
same rules of grammar chosen by other authors without fear of infringe‑
ment. What Oracle contends is that, beyond that point, Google, like any
author, is not permitted to employ the precise phrasing or precise struc‑
ture chosen by Oracle to flesh out the substance of its packages — the
details and arrangement of the prose.

3. Google’s Interoperability Arguments are Irrelevant to Copyrightability

Oracle also argues that the district court erred in invoking interoper‑
ability in its copyrightability analysis. Specifically, Oracle argues that
Google’s interoperability arguments are only relevant, if at all, to fair
use – not to the question of whether the API packages are copyrightable.
We agree.

The district court characterized Sega Enterprises Ltd. v. Accolade, Inc.
and15 as ”close analogies” to this case. According to the court, both de‑
cisions ”held that interface procedures that were necessary to duplicate
in order to achieve interoperability were functional aspects not copy‑

C. COPYRIGHT 19

rightable under Section 102(b).” The district court’s reliance on Sega En‑
terprises and Sony Computer Entertainment v. Connectix Corp. in the copy‑
rightability context is misplaced, however. Both cases were focused
on fair use, not copyrightability. In Sega Enterprises, for example, the
only question was whether Accolade’s intermediate copying was fair
use. The court never addressed the question of whether Sega’s software
code, which had functional elements, also contained separable creative
expression entitled to protection.

This is not a case where Google reverse‑engineered Oracle’s Java
packages to gain access to unprotected functional elements contained
therein. Had Google reverse engineered the programming packages to
figure out the ideas and functionality of the original, and then created its
own structure and its own literal code, Oracle would have no remedy
under copyright whatsoever. Instead, Google chose to copy both the
declaring code and the overall SSO of the 37 Java API packages at issue.

We disagree with Google’s suggestion thatSega Enterprises and Sony
Computer Entertainment created an ”interoperability exception” to copy‑
rightability. Because copyrightability is focused on the choices avail‑
able to the plaintiff at the time the computer program was created, the
relevant compatibility inquiry asks whether the plaintiff’s choices were
dictated by a need to ensure that its program worked with existing third‑
party programs. Whether a defendant later seeks to make its program
interoperable with the plaintiff’s program has no bearing on whether the
software the plaintiff created had any design limitations dictated by ex‑
ternal factors. Stated differently, the focus is on the compatibility needs
and programming choices of the party claiming copyright protection –
not the choices the defendant made to achieve compatibility with the
plaintiff’s program. Consistent with this approach, courts have recog‑
nized that, once the plaintiff creates a copyrightable work, a defendant’s
desire ”to achieve total compatibility... is a commercial and competitive
objective which does not enter into the ... issue of whether particular
ideas and expressions have merged.” Apple Computer, Inc. v. Franklin
Computer Corp.

Whether Google’s software is ”interoperable” in some sense with
any aspect of the Java platform (although as Google concedes, certainly
not with the JVM) has no bearing on the threshold question of whether
Oracle’s software is copyrightable. It is the interoperability and other
needs of Oracle – not those of Google – that apply in the copyrightability
context, and there is no evidence that when Oracle created the Java API
packages at issue it did so to meet compatibility requirements of other
pre‑existing programs.

Google maintains on appeal that its use of the ”Java class and
method names and declarations was ‘the only and essential means’ of
achieving a degree of interoperability with existing programs written
in the Java language.” Indeed, given the record evidence that Google
designed Android so that it would not be compatible with the Java plat‑
form, or the JVM specifically, we find Google’s interoperability argu‑
ment confusing. While Google repeatedly cites to the district court’s

C. COPYRIGHT 20

16. Practice Mgmt. Info. Corp. v. Am.
Med. Ass’n, 121 F.3d 516 (9th Cir.
1997).

finding that Google had to copy the packages so that an app written
in Java could run on Android, it cites to no evidence in the record that
any such app exists and points to no Java apps that either pre‑dated or
post‑dated Android that could run on the Android platform. The com‑
patibility Google sought to foster was not with Oracle’s Java platform
or with the JVM central to that platform. Instead, Google wanted to
capitalize on the fact that software developers were already trained and
experienced in using the Java API packages at issue. Google’s interest
was in accelerating its development process by leveraging Java for its
existing base of developers. Although this competitive objective might
be relevant to the fair use inquiry, we conclude that it is irrelevant to the
copyrightability of Oracle’s declaring code and organization of the API
packages.

Finally, to the extent Google suggests that it was entitled to copy
the Java API packages because they had become the effective industry
standard, we are unpersuaded. Google cites no authority for its sugges‑
tion that copyrighted works lose protection when they become popu‑
lar, and we have found none. In fact, the Ninth Circuit has rejected the
argument that a work that later becomes the industry standard is un‑
copyrightable. See16 (noting that the district court found plaintiff’s med‑
ical coding system entitled to copyright protection, and that, although
the system had become the industry standard, plaintiff’s copyright did
not prevent competitors ”from developing comparative or better cod‑
ing systems and lobbying the federal government and private actors to
adopt them. It simply prevents wholesale copying of an existing sys‑
tem.”). Google was free to develop its own API packages and to lobby
programmers to adopt them. Instead, it chose to copy Oracle’s declar‑
ing code and the SSO to capitalize on the preexisting community of pro‑
grammers who were accustomed to using the Java API packages. That
desire has nothing to do with copyrightability. For these reasons, we
find that Google’s industry standard argument has no bearing on the
copyrightability of Oracle’s work.

Google LLC v. Oracle America, Inc.
141 S. Ct. 1183 (2021)

[On remand, the jury found that Google’s copying was a fair use. The
District Court declined to set aside the verdict, but the Federal Circuit re‑
versed, holding that no reasonable jury could find fair use. The Supreme
Court then granted certiorari on both the copyrightability and fair use
issues.]

Justice BREYER delivered the opinion of the Court. . . .
Generically speaking, computer programs differ from books, films,

and many other ”literary works” in that such programs almost always
serve functional purposes. These and other differences have led at least
some judges to complain that ”applying copyright law to computer pro‑
grams is like assembling a jigsaw puzzle whose pieces do not quite
fit.” . . .

C. COPYRIGHT 21

The upshot, in our view, is that fair use can play an important role
in determining the lawful scope of a computer program copyright, such
as the copyright at issue here. It can help to distinguish among tech‑
nologies. It can distinguish between expressive and functional features
of computer code where those features are mixed. It can focus on the
legitimate need to provide incentives to produce copyrighted material
while examining the extent to which yet further protection creates un‑
related or illegitimate harms in other markets or to the development of
other products. In a word, it can carry out its basic purpose of provid‑
ing a context‑based check that can help to keep a copyright monopoly
within its lawful bounds. . . .

We turn now to the basic legal question before us: Was Google’s
copying of the Sun Java API, specifically its use of the declaring code
and organizational structure for 37 packages of that API, a ”fair use.” . . .

A. ”The Nature of the Copyrighted Work”

The declaring code at issue here resembles other copyrighted works
in that it is part of a computer program. Congress has specified that
computer programs are subjects of copyright. It differs, however, from
many other kinds of copyrightable computer code. It is inextricably
bound together with a general system, the division of computing tasks,
that no one claims is a proper subject of copyright. It is inextricably
bound up with the idea of organizing tasks into what we have called
cabinets, drawers, and files, an idea that is also not copyrightable. It
is inextricably bound up with the use of specific commands known to
programmers, known here as method calls (such as java.lang.Math.max,
etc.), that Oracle does not here contest. And it is inextricably bound up
with implementing code, which is copyrightable but was not copied.

Moreover, the copied declaring code and the uncopied implement‑
ing programs call for, and reflect, different kinds of capabilities. A sin‑
gle implementation may walk a computer through dozens of different
steps. To write implementing programs, witnesses told the jury, re‑
quires balancing such considerations as how quickly a computer can
execute a task or the likely size of the computer’s memory. One wit‑
ness described that creativity as ”magic” practiced by an API developer
when he or she worries ”about things like power management” for de‑
vices that ”run on a battery.” This is the very creativity that was needed
to develop the Android software for use not in laptops or desktops but
in the very different context of smartphones.

The declaring code (inseparable from the programmer’s method
calls) embodies a different kind of creativity. Sun Java’s creators, for ex‑
ample, tried to find declaring code names that would prove intuitively
easy to remember. They wanted to attract programmers who would
learn the system, help to develop it further, and prove reluctant to use
another. (”Declaring code ... is user facing. It must be designed and or‑
ganized in a way that is intuitive and understandable to developers so
that they can invoke it”). Sun’s business strategy originally emphasized
the importance of using the API to attract programmers. It sought to

C. COPYRIGHT 22

make the API ”open” and ”then ... compete on implementations.” The
testimony at trial was replete with examples of witnesses drawing this
critical line between the user‑centered declaratory code and the innova‑
tive implementing code.

These features mean that, as part of a user interface, the declaring
code differs to some degree from the mine run of computer programs.
Like other computer programs, it is functional in nature. But unlike
many other programs, its use is inherently bound together with un‑
copyrightable ideas (general task division and organization) and new
creative expression (Android’s implementing code). Unlike many other
programs, its value in significant part derives from the value that those
who do not hold copyrights, namely, computer programmers, invest of
their own time and effort to learn the API’s system. And unlike many
other programs, its value lies in its efforts to encourage programmers to
learn and to use that system so that they will use (and continue to use)
Sun‑related implementing programs that Google did not copy.

Although copyrights protect many different kinds of writing, Leval
1116, we have emphasized the need to ”recogni[ze] that some works
are closer to the core of [copyright] than others,” In our view, for the
reasons just described, the declaring code is, if copyrightable at all, fur‑
ther than are most computer programs (such as the implementing code)
from the core of copyright. That fact diminishes the fear, expressed by
both the dissent and the Federal Circuit, that application of ”fair use”
here would seriously undermine the general copyright protection that
Congress provided for computer programs. And it means that this fac‑
tor, ”the nature of the copyrighted work,” points in the direction of fair
use.

B. ”The Purpose and Character of the Use”

. . . Google copied portions of the Sun Java API precisely, and it did
so in part for the same reason that Sun created those portions, namely,
to enable programmers to call up implementing programs that would
accomplish particular tasks. But since virtually any unauthorized use of
a copyrighted computer program (say, for teaching or research) would
do the same, to stop here would severely limit the scope of fair use in
the functional context of computer programs. Rather, in determining
whether a use is ”transformative,” we must go further and examine the
copying’s more specifically described ”purpose[s]” and ”character.”

Here Google’s use of the Sun Java API seeks to create new prod‑
ucts. It seeks to expand the use and usefulness of Android‑based smart‑
phones. Its new product offers programmers a highly creative and in‑
novative tool for a smartphone environment. To the extent that Google
used parts of the Sun Java API to create a new platform that could be
readily used by programmers, its use was consistent with that creative
”progress” that is the basic constitutional objective of copyright itself.

The jury heard that Google limited its use of the Sun Java API to
tasks and specific programming demands related to Android. It copied
the API (which Sun created for use in desktop and laptop computers)

C. COPYRIGHT 23

only insofar as needed to include tasks that would be useful in smart‑
phone programs. And it did so only insofar as needed to allow program‑
mers to call upon those tasks without discarding a portion of a famil‑
iar programming language and learning a new one. To repeat, Google,
through Android, provided a new collection of tasks operating in a dis‑
tinct and different computing environment. Those tasks were carried
out through the use of new implementing code (that Google wrote) de‑
signed to operate within that new environment. Some of the amici refer
to what Google did as ”reimplementation,” defined as the ”building of
a system ... that repurposes the same words and syntaxes” of an existing
system —in this case so that programmers who had learned an existing
system could put their basic skills to use in a new one.

The record here demonstrates the numerous ways in which reim‑
plementing an interface can further the development of computer pro‑
grams. The jury heard that shared interfaces are necessary for different
programs to speak to each other. (”We have to agree on the APIs so that
the application I write to show a movie runs on your device”). It heard
that the reimplementation of interfaces is necessary if programmers are
to be able to use their acquired skills. (”If the API labels change, then ei‑
ther the software wouldn’t continue to work anymore or the developer
... would have to learn a whole new language to be able to use these
API labels”). It heard that the reuse of APIs is common in the industry.
It heard that Sun itself had used pre‑existing interfaces in creating Java.
And it heard that Sun executives thought that widespread use of the
Java programming language, including use on a smartphone platform,
would benefit the company. . . .

These and related facts convince us that the ”purpose and charac‑
ter” of Google’s copying was transformative—to the point where this
factor too weighs in favor of fair use. . . .

C. ”The Amount and Substantiality of the Portion Used”

If one considers the declaring code in isolation, the quantitative amount
of what Google copied was large. Google copied the declaring code for
37 packages of the Sun Java API, totaling approximately 11,500 lines
of code. Those lines of code amount to virtually all the declaring code
needed to call up hundreds of different tasks. On the other hand, if
one considers the entire set of software material in the Sun Java API,
the quantitative amount copied was small. The total set of Sun Java API
computer code, including implementing code, amounted to 2.86 million
lines, of which the copied 11,500 lines were only 0.4 percent.

The question here is whether those 11,500 lines of code should be
viewed in isolation or as one part of the considerably greater whole. . . .

Several features of Google’s copying suggest that the better way
to look at the numbers is to take into account the several million lines
that Google did not copy. For one thing, the Sun Java API is insep‑
arably bound to those task‑implementing lines. Its purpose is to call
them up. For another, Google copied those lines not because of their
creativity, their beauty, or even (in a sense) because of their purpose. It

C. COPYRIGHT 24

copied them because programmers had already learned to work with
the Sun Java API’s system, and it would have been difficult, perhaps
prohibitively so, to attract programmers to build its Android smart‑
phone system without them. Further, Google’s basic purpose was to
create a different task‑related system for a different computing envi‑
ronment (smartphones) and to create a platform—the Android platform
—that would help achieve and popularize that objective. The ”substan‑
tiality” factor will generally weigh in favor of fair use where, as here, the
amount of copying was tethered to a valid, and transformative, purpose.

We do not agree with the Federal Circuit’s conclusion that Google
could have achieved its Java‑compatibility objective by copying only the
170 lines of code that are ”necessary to write in the Java language.” In
our view, that conclusion views Google’s legitimate objectives too nar‑
rowly. Google’s basic objective was not simply to make the Java pro‑
gramming language usable on its Android systems. It was to permit
programmers to make use of their knowledge and experience using the
Sun Java API when they wrote new programs for smartphones with the
Android platform. In principle, Google might have created its own, dif‑
ferent system of declaring code. But the jury could have found that its
doing so would not have achieved that basic objective. In a sense, the
declaring code was the key that it needed to unlock the programmers’
creative energies. And it needed those energies to create and to improve
its own innovative Android systems.

We consequently believe that this ”substantiality” factor weighs in
favor of fair use.

D. Market Effects

The fourth statutory factor focuses upon the ”effect” of the copying in
the ”market for or value of the copyrighted work.” 17 U.S.C. § 107(4).
Consideration of this factor, at least where computer programs are at
issue, can prove more complex than at first it may seem. It can require a
court to consider the amount of money that the copyright owner might
lose. . . . Making a film of an author’s book may similarly mean potential
or presumed losses to the copyright owner. Those losses normally con‑
flict with copyright’s basic objective: providing authors with exclusive
rights that will spur creative expression.

But a potential loss of revenue is not the whole story. We here
must consider not just the amount but also the source of the loss. As
we pointed out in Campbell, a ”lethal parody, like a scathing theatre re‑
view,” may ”kil[l] demand for the original.” Yet this kind of harm, even
if directly translated into foregone dollars, is not ”cognizable under the
Copyright Act.”

Further, we must take into account the public benefits the copying
will likely produce. Are those benefits, for example, related to copy‑
right’s concern for the creative production of new expression? Are they
comparatively important, or unimportant, when compared with dollar
amounts likely lost (taking into account as well the nature of the source
of the loss)?

C. COPYRIGHT 25

We do not say that these questions are always relevant to the appli‑
cation of fair use, not even in the world of computer programs. Nor do
we say that these questions are the only questions a court might ask. But
we do find them relevant here in helping to determine the likely market
effects of Google’s reimplementation.

As to the likely amount of loss, the jury could have found that An‑
droid did not harm the actual or potential markets for Java SE. And it
could have found that Sun itself (now Oracle) would not have been able
to enter those markets successfully whether Google did, or did not, copy
a part of its API. First, evidence at trial demonstrated that, regardless of
Android’s smartphone technology, Sun was poorly positioned to suc‑
ceed in the mobile phone market. The jury heard ample evidence that
Java SE’s primary market was laptops and desktops. It also heard that
Sun’s many efforts to move into the mobile phone market had proved
unsuccessful. As far back as 2006, prior to Android’s release, Sun’s exec‑
utives projected declining revenue for mobile phones because of emerg‑
ing smartphone technology. When Sun’s former CEO was asked di‑
rectly whether Sun’s failure to build a smartphone was attributable to
Google’s development of Android, he answered that it was not. Given
the evidence showing that Sun was beset by business challenges in de‑
veloping a mobile phone product, the jury was entitled to agree with
that assessment.

Second, the jury was repeatedly told that devices using Google’s
Android platform were different in kind from those that licensed Sun’s
technology. For instance, witnesses explained that the broader indus‑
try distinguished between smartphones and simpler ”feature phones.”
As to the specific devices that used Sun‑created software, the jury heard
that one of these phones lacked a touchscreen, while another did not
have a QWERTY keyboard. For other mobile devices, the evidence
showed that simpler products, like the Kindle, used Java software, while
more advanced technology, like the Kindle Fire, were built on the An‑
droid operating system. This record evidence demonstrates that, rather
than just ”repurposing [Sun’s] code from larger computers to smaller
computers,” Google’s Android platform was part of a distinct (and more
advanced) market than Java software.

Looking to these important differences, Google’s economic expert
told the jury that Android was not a market substitute for Java’s soft‑
ware. As he explained, ”the two products are on very different de‑
vices,” and the Android platform, which offers ”an entire mobile oper‑
ating stack,” is a ”very different typ[e] of produc[t]” than Java SE, which
is ”just an applications programming framework.” Taken together, the
evidence showed that Sun’s mobile phone business was declining, while
the market increasingly demanded a new form of smartphone technol‑
ogy that Sun was never able to offer.

Finally, the jury also heard evidence that Sun foresaw a benefit from
the broader use of the Java programming language in a new platform
like Android, as it would further expand the network of Java‑trained
programmers. In other words, the jury could have understood Android

C. COPYRIGHT 26

and Java SE as operating in two distinct markets. And because there are
two markets at issue, programmers learning the Java language to work
in one market (smartphones) are then able to bring those talents to the
other market (laptops).

Sun presented evidence to the contrary. Indeed, the Federal Circuit
held that the ”market effects” factor militated against fair use in part be‑
cause Sun had tried to enter the Android market. But those licensing
negotiations concerned much more than 37 packages of declaring code,
covering topics like ”the implementation of [Java’s] code” and ”brand‑
ing and cooperation” between the firms. In any event, the jury’s fair use
determination means that neither Sun’s effort to obtain a license nor Or‑
acle’s conflicting evidence can overcome evidence indicating that, at a
minimum, it would have been difficult for Sun to enter the smartphone
market, even had Google not used portions of the Sun Java API.

On the other hand, Google’s copying helped Google make a vast
amount of money from its Android platform. And enforcement of the
Sun Java API copyright might give Oracle a significant share of these
funds. It is important, however, to consider why and how Oracle might
have become entitled to this money. When a new interface, like an API
or a spreadsheet program, first comes on the market, it may attract new
users because of its expressive qualities, such as a better visual screen or
because of its superior functionality. As time passes, however, it may
be valuable for a different reason, namely, because users, including pro‑
grammers, are just used to it. They have already learned how to work
with it.

The record here is filled with evidence that this factor accounts for
Google’s desire to use the Sun Java API. This source of Android’s prof‑
itability has much to do with third parties’ (say, programmers’) invest‑
ment in Sun Java programs. It has correspondingly less to do with Sun’s
investment in creating the Sun Java API. We have no reason to believe
that the Copyright Act seeks to protect third parties’ investment in learn‑
ing how to operate a created work.

Finally, given programmers’ investment in learning the Sun Java
API, to allow enforcement of Oracle’s copyright here would risk harm
to the public. Given the costs and difficulties of producing alternative
APIs with similar appeal to programmers, allowing enforcement here
would make of the Sun Java API’s declaring code a lock limiting the fu‑
ture creativity of new programs. Oracle alone would hold the key. The
result could well prove highly profitable to Oracle (or other firms hold‑
ing a copyright in computer interfaces). But those profits could well
flow from creative improvements, new applications, and new uses de‑
veloped by users who have learned to work with that interface. To that
extent, the lock would interfere with, not further, copyright’s basic cre‑
ativity objectives. . . .

The uncertain nature of Sun’s ability to compete in Android’s mar‑
ket place, the sources of its lost revenue, and the risk of creativity‑related
harms to the public, when taken together, convince that this fourth
factor—market effects—also weighs in favor of fair use. . . .

C. COPYRIGHT 27

We reach the conclusion that in this case, where Google reimple‑
mented a user interface, taking only what was needed to allow users to
put their accrued talents to work in a new and transformative program,
Google’s copying of the Sun Java API was a fair use of that material as
a matter of law.

Problems

Tetris Problem
Your client, Thoth Software, would like to create and sell a version of
Tetris for the Digix gaming console. What aspects of the game can Thoth
imitate without fear of liability? The name? Falling blocks? The shapes
of the blocks? Their colors? Lines that disappear when completely filled
in? The music? The graphics around the play field?

	Software
	Trade Secret
	Patent
	Copyright
	Problems

