Technology Law
The Journal of Things We Like (Lots)
https://cyber.jotwell.com

When Law is Code

Author : James Grimmelmann

Date : July 31, 2024

Sarah B. Lawsky, Coding the Code: Catala and Computationally Accessible Tax Law, 75 SMU L. Rev.
535 (2022).

Sarah B. Lawsky’s Coding the Code: Catala and Computationally Accessible Tax Law offers an
exceptionally thoughtful perspective on the automation of legal rules. It provides not just a nuanced
analysis of the consequences of translating legal doctrines into computer programs (something many
other scholars have done), but also a tutorial in how to do so effectively, with fidelity to the internal
structure of law and humility about what computers do and don’t do well.

Coding the Code builds on Lawsky’s previous work on formal logic and its advantages for statutory
interpretation. (Formal logic, sometimes called “symbolic” or “mathematical” logic, involves the precise
and rigorous analysis of symbolic expressions representing arguments, such as “p & —-q"” to mean “p is
true and g is not true”.) In her 2017 A Logic for Statutes, she observed that many statutory provisions
have a characteristic structure: rules subject to exceptions. A typical rule says that WHEN certain
conditions are satisfied, THEN certain consequences follow, UNLESS one of several exceptions applies.
Exceptions have exceptions of their own: interest payments are deductible, unless they are personal,
unless they are mortgage payments.

Lawsky’s great insight about law and logic is that this characteristic structure of nested exceptions is
most naturally modeled using a branch of formal logic called “default logic.” Default logic, unlike
standard “monotonic logic,” allows for tentative conclusions. On the basis of what | know now, this is a
nondeductible personal interest payment, but let me investigate further, and oh, | see that this is
qualified residence interest, so | am withdrawing my tentative conclusion and replacing it with another
tentative conclusion that the payment is deductible. And so on, until there are no more clauses of the
statute to check, no more exceptions to explore, and the most recent tentative conclusion becomes a
definitive one. It is a process of successive refinement, converging on certainty. Monotonic logic, by
sharp contrast, requires ruling out all possibilities before drawing a conclusion, which remains valid for
all time once drawn.

Default logic is not more powerful than standard logic, but for some kinds of reasoning it is cleaner, and
Lawsky’s point is that the back-and-forth of exceptions and subexceptions in statutory analysis maps
naturally onto default logic’s structure of defaults and defeats. A formal logician applying a default
logic’s inference rules follows a reasoning process that naturally corresponds to the reasoning process
followed by a lawyer working through a statute.

Default logic is also a good tool for programming. (It is a formal logic, after all.) Once a human has
translated a natural-language statute into a formal-logic representation, it becomes possible to reason
automatically and algorithmically about the statute and how it treats various fact patterns. In 2021, a
trio of computer scientists—Denis Merigoux, Nicolas Chataing, and Jonathan Protzenko—published
Catala: A Programming Language for the Law, which turned Lawsky’s default-logic analysis of statutes
from an abstract formalism useful for pencil-and-paper analysis into a concrete implementation useful
for programming. (Lawsky herself is now a co-designer of the Catala language.)

1/3


https://scholar.smu.edu/cgi/viewcontent.cgi?article=4932&context=smulr
https://www.law.northwestern.edu/faculty/profiles/sarahlawsky/
https://scholarship.law.ufl.edu/cgi/viewcontent.cgi?article=1288&context=ftr
https://dl.acm.org/doi/abs/10.1145/3473582
https://catala-lang.org/

Technology Law
The Journal of Things We Like (Lots)
https://cyber.jotwell.com

As someone who sank years of his life into programming a body of law, | can say that Catala is the
cleanest and most broadly useful advance towards making law programmable | have ever seen. A
29-page paper filled with equations and code blocks may be quite daunting (our research group took
several weeks to read through the formalisms together in detail), but the basic idea of what it does is
beautifully simple and clear. Catala allows a programmer to write the way that lawyers think: by laying
out rules that trigger consequences, together with the exceptions that can prevent the consequences
from happening.

Tax law in particular has two advantages that make it well-suited for this kind of formalization. First, it
depends on—and attempts to produce—clear and determinate answers. Everything comes down to, or
should, a specific amount due. And second, much of tax law is what a programmer would “declarative”
rather than “imperative”; instead of telling people what to do, it describes the consequences of what
they have already done. The Internal Revenue Code, as Lawsky has shown, comprises declarative
provisions that are particularly clean to implement in a Catala-style language that uses defaults and
exceptions. Taking advantage of this affinity between tax law and programming languages, Merigoux
and Protzenko, along with Raphaél Monat, have been developed a toolchain to help the French tax
authority modernize its antiquated systems. Their work puts directly into practice Lawsky-ian ideas
about the value of clean formal reasoning to improve the application of tax statutes.

Coding the Code is in many ways the summa of Lawsky’s project over the last decade. After an
accessible introduction to default logic, other portions of Coding the Code draw on what Lawsky has
been up to lately: actually using Catala to code up tax law. She and her collaborators have approached
the task with humility and care—virtues that Lawsky describes the need for in interdisciplinary
collaborations in the recently-published Computational Law and Epistemic Trespassing. One approach
they use is “pair programming”: a lawyer and a computer scientist sit side by side at one computer,
discussing a statutory section and making sure that they agree on its translation into code. Another is
“literate programming”, in which code is interwoven with comments that document what each part of it
is doing. For statutory translations, these comments can include the statutory text itself, making the
isomorphism between specification (the statute) and implementation (the code) wholly explicit. Neither
pair programming nor literate programming directly affects what the code-ified version of the law does;
instead, they are tools to make sure that the people who do the translation do so faithfully, in a way that
others who come later can recognize as correct. (Lawrence Lessig, patron saint of code-as-law, would

approve.)

Coding the Code, like the rest of Lawsky’s work, stands out in two ways. First, she is actively making it
happen, using her insights as a legal scholar and logician to push forward the state of the art. Her
Lawsky Practice Problems site—a hand-coded open source app that can generate as many tax exercises
as students have the patience to work through—is a pedagogical gem, because it matches the
computer science under the hood to the structure of the legal problem. (Her Teaching Algorithms and
Algorithms for Teaching documents the app and why it works the way it does.)

Second, Lawsky’s claims about the broader consequences of formal approaches are grounded in a
nuanced understanding of what these formal approaches do well and what they do not. Sometimes
formalization leads to insight; her recent Reasoning with Formalized Statutes shows how coding up a
statute section can reveal unexpected edge cases and drafting mistakes. At other times, formalization is
hiding in plain sight. As she observes in 2020’s Form as Formalization, the IRS already walks taxpayers
through tax algorithms; its forms provide step-by-step instruction for making tax computations. In every
case, Lawsky links carefully links her systemic claims to specific doctrinal examples. She shows not that
computational law will change everything, but rather that it is already changing some things, in ways
large and small.

2/3


https://conveyanc.es/
https://arxiv.org/abs/2011.07966
https://journalcrcl.org/crcl/article/view/58/25
https://www.amazon.com/Fidelity-Constraint-Supreme-American-Constitution/dp/0190945664
https://www.amazon.com/Fidelity-Constraint-Supreme-American-Constitution/dp/0190945664
https://www.lawskypracticeproblems.org/
https://github.com/slawsk/lawsky-practice-problems/
https://scholarship.law.ufl.edu/ftr/vol24/iss2/4/
https://scholarship.law.ufl.edu/ftr/vol24/iss2/4/
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4832255
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3587576

Technology Law
The Journal of Things We Like (Lots)
https://cyber.jotwell.com

It is unusual for an established law professor to go back to school for a PhD. In philosophy. With a
dissertation on formal logic. But Coding the Code, published five years after Lawsky submitted her
(highly technical) thesis, shows the great value for legal scholars of the approach she developed in her
PhD. It refines her distinctive approach to statutory analysis—which mixes careful legal reading with
technical tools from formal logic and computer science—in a way that has great potential to help other
lawyers and legal scholars be more precise about what tax laws say. All they need to do is talk to
computer scientists, and Lawsky provides a roadmap for how. There is no epistemic trespassing in
Sarah Lawsky’s work. Everywhere she goes, she is a welcomed guest.

Cite as: James Grimmelmann, When Law is Code, JOTWELL (July 31, 2024) (reviewing Sarah B. Lawsky,
Coding the Code: Catala and Computationally Accessible Tax Law, 75 SMU L. Rev. 535 (2022)),
https://cyber.jotwell.com/when-law-is-code/.

3/3


https://escholarship.org/uc/item/59j2j45w
https://cyber.jotwell.com/when-law-is-code/
http://www.tcpdf.org

