Quantum Computation: An Introduction
A Thesis presented
by
James Taylor Lewis Grimmelmann
To
Computer Science
in partial fulfillment of the honors requirements
for the degree of
Bachelor of Arts
Harvard College

Cambridge, Massachusetts

April 5, 1999

ii

Contents

1 Introduction 1
1.1 What is Quantum Computation? o000 o 1
1.2 History . . . o o e e e 2
1.3 From Hardware to Algorithms o 3
1.4 About This Thesis e 4
1.5 Outline o 5

2 Mathematical Preliminaries 7
2.1 Imtroduction e e e e e 7
2.2 The Classical Realm 0 7

221 ABIt ..o e 7
2.2.2 States and Observables L o 8
2.2.3 Transformations e 9
2.3 The Probabilistic Realm o o 9
2.3.1 States and Observations Lo oo 9
2.3.2 Transformations e 10
2.3.3 The Linear Algebra of a Probabilistic Bit 11
2.4 The Quantum Realmo 12
2.4.1 States, Measurements, and Transformations 12
24.2 A Quantum Example L o 13
2.5 The Hadamard Rotation 14
2.6 Larger Quantum Systemso e 16
2.7 Measurementso Lo e e e e e e e 18
2.8 A Bit of Philosophy 20

iii

iv CONTENTS

3 Quantum Hardware 21
3.1 Overviewl e e e e 21
3.2 TonTrap L e e e e e 22
3.3 NMR e 24
3.4 Photonics e 26
3.5 Quantum Dots e 27
3.6 ANyons ... L.l 28

4 Quantum Theory 31
4.1 Theoretical Models of Quantum Computation, 31

4.1.1 Quantum Turing Machines oL 31
4.1.2 Quantum Cellular Automata L. 32
4.1.3 Acyclic Quantum Circuits oL 33
4.1.4 Circuits and Turing Machines Compared 34
4.2 Quantum Computability Theory oo L. 36
4.2.1 Approximating Transformations, 36
4.2.2 A Universal Quantum Gate L Lo oL 36
4.2.3 Other Universal Gates L 38

5 Quantum Circuits 41
5.1 OVErview L e e e e e 41
5.2 General Reversible Simulations oo oo 42
5.3 Universal Reversible Gates L 44
5.4 Reimplementing Familiar Functions 0. 46

54.1 Addition. e 47

5.4.2 Modular Addition and Beyond oL L L. 47

CONTENTS

6.1

6.2

6.3

6 Quantum Programming
Problems of Quantum Programming L .
6.1.1 Programming for Circuits o
6.1.2 Programming Unitary Transformations
Preventing Non-Unitary Transformations
6.2.1 Reversibility as Typing oL
6.2.2 Uniqueness Types e
6.2.3 Linear Logic e
6.2.4 Preparation, Measurement, and Reversal
Other Programming Paradigms
6.3.1 Object-Oriented Programming
6.3.2 Imperative Programming oo
6.3.3 Declarative Programming 0o o000

7.1
7.2

7.3

7.4

7 Quantum Algorithms
Quantum Oracles e
Deutsch’s Problem L e
7.2.1 The Two-Query Algorithm
7.2.2 The One-Query Algorithm,
7.2.3 Features of the Algorithm L.
The Bernstein-Vazirani Problem
7.3.1 The Bernstein-Vazirani Algorithm
7.3.2 Proof of Correctness e
7.3.3 Commentary Lo e e
Simon’s Problem
7.4.1 Simon’s Algorithm Lo o
7.4.2 Features of the Algorithm
Shor’s Algorithm

7.5

7.5.1 The Quantum Fourier Transform

49
49
49
49
ol
52
52
o4
56
o7
58
58
59

61

vi

7.5.2 The Period-Finding Algorithm
7.5.3 Factoring As Period-Finding
7.6 Grover’s Algorithm
7.6.1 The Grover Iteration
7.6.2 The Full Algorithm
7.6.3 Extensions to Grover’s Algorithm

8 Conclusion

8.1 Other Directions
8.1.1 Quantum Information Theory
8.1.2 Quantum Cryptography
8.1.3 Quantum Error Correction

8.1.4 Coutinuous Quantum Computation

8.1.5 Quantum Language Theory

8.2 The Future of Quantum Computation

Bibliography

CONTENTS

Chapter 1

Introduction

1.1 What is Quantum Computation?

In a literal sense, all computation is “quantum,” in that it is carried out on physical devices
which are subject to the laws of quantum mechanics. When we speak of “quantum computation,”
however, we generally mean something more specific: the computation carried out by devices in
which these laws are algorithmically explicit. This attitude is similar to the way in which we
speak of “randomized computation:” all computers are probabilistic to the extent that they are
vulnerable to cosmic rays (for example), but by this phrase we usually mean computers whose use
of randomness is explicit.

This analogy with randomized computation is useful in understanding the central problems of
quantum computation as an emerging sub-field of computer science. Work on randomized compu-
tation generally falls into one of three categories:

1. “Where do we get it?” This category involves the description of architectural and algorithmic
methods for obtaining random values for use in computation, and is the province of the
disciplines of computer architecture and computer systems.

2. “How do we use it?” This category encompasses the description of algorithms which rely upon
random choices for their efficiency or their effectiveness in solving computational problems,
and is the domain of algorithm and protocol design.

3. “What can’t it do?” This category includes the analysis of theoretical properties any random-
ized algorithms must satisfy and the setting of upper and lower bounds on the tractability
of problems in models of computation that use randomness. Such analysis is is the realm of
computability and complexity theory.

Nothing in this taxonomy, of course, depends on our restricting ourselves to randomized models
of computation; we can equally well ask these questions about models in which other kinds of
effects figure. Quantum computation is to quantum mechanics as randomized computation is to
probability theory.

2 CHAPTER 1. INTRODUCTION

Quantum mechanics exhibits a number of phenomena which are alien to classical computing
and to ordinary intuition. Quantum systems can exhibit superposition, in which the system be-
haves as though it were in multiple incompatible states simultaneously. The canonical example of
superposition is the two-slit experiment, in which an electron is directed at a target through two
small slits in an intervening barrier. Although each electron is observed to strike the detector at
only one place, the distribution of locations where electrons strike indicate an interference pattern,
as though a wave had traveled through both slits and interfered with itself (rather than being just
the sum of the distributions from each slit independently). Such an outcome is impossible unless
one posits that the electron travels through both slits. The electron is in a superposition of “traveled
through the first slit” and “traveled through the second slit” states.

Superposition, as suggested in the above example, is also interesting because different terms
in a superposition can interfere with each other: the information in the electron’s “waveform”
when it reaches the detector carries information about both possible paths. The act of measuring a
quantum system can affect that system in radical ways: installing additional detectors to determine
which slit the electron goes through destroys the interference pattern. Merely examining a system
— no matter how non-intrusive the examination — can (and, under certain circumstances must)
change that system drastically.

Quantum systems also display the effects of entanglement. Two particles can be placed in an
“entangled” state such that they display phenomena which cannot be accounted for by any local
theory. There is no way to model the particles as separate physical systems, even when they are
physically separated: changes to one can affect the other, and the pattern of outcomes resulting
from measurements on them displays non-local correlations. Although it runs counter to intuition
(and to several “laws” of physics that have not yet been successfully reconciled with quantum
mechanics), entanglement is real and has been repeatedly verified experimentally.

Quantum computation attempts to harness these various effects for computational purposes.

1.2 History

Physicists and philosophers have been interested in the strange realm of quantum mechanics for
many years. Over the course of the twentieth century, physics has developed a reasonably complete
description of quantum mechanical phenomena and the mathematical rules governing the behavior
of quantum systems. There is little philosophical consensus on the correct relationship between
these rules and the physical world (other than that the rules give predictions which can be observed
to be correct), but philosophy has focused attention on the precise ways in which quantum physics
differs from classical physics. The minimal examples developed by philosophers to highlight these
differences are the lineal ancestors of the abstract systems considered in quantum computation.

Richard Feynman was among the first physicists to suggest that the computational aspects of
quantum mechanics were worth exploring. He noted that simulating quantum systems is expo-
nentially difficult classically because quantum systems can efficiently create superpositions with
exponentially many terms. For this reason, he suggested, it would be worthwhile to develop quan-
tum “computers” for the purpose of directly simulating quantum systems of interest to theoretical
physicists. He also observed that precisely because they could efficiently create superpositions with

1.3. FROM HARDWARE TO ALGORITHMS 3

exponentially many terms, quantum computers would be capable of a form of “quantum paral-
lelism.” The difficulty in exploiting such parallelism consists in finding a way for the different
“processors” to communicate with each other. Such communication is necessary if they are to
combine information to make a single coherent answer, rather than an answer randomly chosen
from an exponentially large sample.

The next major advance in quantum computation came at the end of the 1980s and in the early
1990s when David Deutsch developed a quantum algorithm that required fewer oracle queries to
answer a question about an unknown function than did any classical algorithm. Following Deutsch’s
discovery, interest in quantum computation rose dramatically. A succession of algorithms for gener-
alizations of Deutsch’s problem were accompanied by an interest in methods for actually construct-
ing quantum computers and in developing formal models to reason about them. In 1994, Peter Shor
presented an algorithm for polynomial-time factorization on a quantum computer, demonstrating
unexpected power for quantum algorithms. Shor’s algorithm has been followed by several others,
none quite as dramatic. Lov Grover’s algorithm for unsorted database search, which achieves a
quadratic speedup over any classical algorithm, is the most prominent, and the one with the most
promising prospects for further discoveries.

1.3 From Hardware to Algorithms

In the tradition of abstraction within computer science, quantum algorithms have been specified
with relatively little reference to specific physical models of computation. Traditional algorithm
designers rely upon a certain (and somewhat fluid) set of primitive operations. The Shor and
Grover algorithms, along with their extensions, depend on a “quantumized” set of such primitives,
and their authors have been careful to express their algorithms so as to make those primitives
which they require more or less explicit. In many respects, these primitives — by and large, simple
operations on quantum bits, or “qubits” — seem to be reasonable algorithmic building blocks,
much like the conventional primitives used to specify classical algorithms: the instruction-set of a
von Neumann machine, the operations of basic set theory, or the manipulation of elementary data
structures, for example.

In the quantum world, however, it is not a priori obvious that such abstract primitives neces-
sarily map onto any implementable computational device. We understand reasonably well what
a classical “bit” is: the voltage level along a wire can be effectively controlled, maintained in a
way that is robust against likely errors, used to interact in computationally useful ways with other
bits similarly stored, and scaled arbitrarily. Because of the small scale on which quantum effects
dominate classical ones — and the quixotic nature of those very effects — virtually none of the
traditional technology used to implement classical bits can be used to create qubits that manifest
desirable quantum properties and satisfy the above constraints. The design of quantum compu-
tational devices requires techniques from almost every discipline of computer science. In many
cases, these techniques draw upon both traditional results and more recent, seemingly unrelated,
research. That quantum computation is even plausible is a major accomplishment, and one in
which virtually all of computer science has participated.

4 CHAPTER 1. INTRODUCTION

1.4 About This Thesis

This thesis has been written as an introduction to quantum computation for computer scientists. It
surveys, from the bottom up, the results which establish the possibility of quantum computation,
the systems necessary to make quantum computation a reality, and the algorithms which make
quantum computation desirable. The tools employed to surmount the obstacles faced by quantum
computers come from many disciplines of computer science, and this thesis teases out the ways
in which the traditional methods of these disciplines can be applied within the new context of
quantum computation.

The specific contributions of this thesis are twofold. First, much of the material presented herein
has not been previously gathered in one place. Although good surveys are available for some fields
of quantum computation, there has been little cohesion to the literature in other areas. Specifically,

e The competing hardware implementations proposed for quantum computers are almost never
compared with each other, and it is rare to find an article discussing more than one such
proposal. This thesis presents all the salient hardware models in a single unified framework,
emphagizing the relative feasibility of constructing actual quantum computers of each pro-
posed type.

e Discussion of theoretical models of quantum computation is often not grounded in the rela-
tionship of those models to the quantum devices they are, in theory, abstractions of. The
crucial distinctions between circuit and Turing machine models, in particular, seem to have
been independently discovered on several occasions, but the importance and ramifications of
these distinctions have rarely been noted. This thesis discusses formal models comparatively,
with reference both to their underlying mathematical objects and to the ways in which these
formal models abstract away from and reflect physical computational systems.

e The lack of cohesion in discussions of quantum programming languages is especially severe.
Techniques borrowed from functional programming and reversible computing largely solve
most of the problems posed by quantum programming, but this accomplishment has gone
almost completely unnoticed, even by those who have participated in it. This thesis provides
the first known overview of quantum programming as a single discipline. As a result, it is
able to juxtapose the problems of quantum programming with their solutions, making explicit
many connections that have remained implicit in the work of previous authors.

The other contributions of this thesis are expository ones. Beyond the advantages of discussing
a wide variety of quantum computational issues in one unified context, this thesis has a number of
specific features designed with pedagogical intent. In particular:

e It is the view of the author that much of the mathematical detail usually provided in discussing
quantum algorithms is unnecessary, advancing the interests of neither precision nor elegance.
The mathematical treatment of quantum effects in this thesis is considerably simplified from
the usual treatment given in papers on the subject. Mathematical description is regarded as
a means towards the end of providing the reader with a solid intuition for the computational
aspects of quantum systems, not as an acceptable substitute for that intuition.

1.5. OUTLINE S

e As a corollary to the above, most discussions of quantum computation are designed for an
audience of physicists, and therefore assume in their audience prior exposure to quantum
mechanics and its mathematical formalisms. This thesis is relatively unique in that it is
written for computer scientists. The necessary physics and linear algebra are motivated
by consideration of computational systems, rather than being presented as abstract givens.
Conversely, this thesis assumes in the reader a background in the ideas and terms of computer
science, to about the level of an introductory or intermediate undergraduate curriculum.

e The extended treatment of programming language design for quantum devices is motivated
by a belief that the study of methods for programming a system leads to a better under-
standing of that system’s capabilities and limits. Understanding quantum computation and
understanding how to specify quantum computation are closely related challenges.

e The quantum Fourier transform, despite its importance, is rarely presented clearly. Where
proofs of correctness are offered, they are generally unilluminating. This thesis gives a new,
inductive analysis of the quantum Fourier transform.

e This thesis provides an annotated bibliography to point out important papers and good
review articles on quantum computation to the reader interested in exploring some aspect of
quantum computation in greater depth.

1.5 Outline

Chapter 2 discusses the mathematical formalisms employed in later chapters, the basic constraints
on quantum computation imposed by theoretical physics, and some useful ways of thinking about
quantum systems. The subsequent chapters draw frequently, both implicitly and explicitly, on the
definitions and results of chapter 2.

Chapter 3 surveys the physical implementations that have been proposed (and in some cases
built) for quantum computers, with an emphasis on assessing the suitability of each as a platform
for large-scale quantum computation. The key concern for each system is its ability to implement,
scalably and reliably, a certain set of primitive operations.

Chapter 4 establishes that the primitive operations supported by proposed hardware for quan-
tum computers are sufficient, in the sense that computers capable of carrying out such operations
can carry out any operation available on any quantum computer. Part of this task involves pin-
ning down the precise formal meaning of “any quantum computer,” so chapter 4 investigates the
principal theoretical models currently use for describing general-purpose quantum computers.

Chapter 5 studies the connections between quantum computation and reversible computation.
Reversible computation emerged from research into information theory and low-power computation,
but has established a number of results of importance to quantum computation. In particular,
reversible computation provides answers to a number of problems faced in designing algorithms
that will run on quantum computers and in reimplementing classically-computable functions on
quantum architectures. Chapter 4 establishes the theoretical limits on the computations supported
by devices described in chapter 3; chapter 5 fills in the gap by describing how those devices can
compute functions more powerful than their primitive operations.

6 CHAPTER 1. INTRODUCTION

Chapter 6 discusses techniques for programming quantum computers, using the tools of pro-
gramming language theory and design. A key challenge in programming computer systems is to
find notations which communicate both the capabilities and the limitations of the devices being
programmed; a number of disparate ideas from functional programming and other paradigms of
programming are applicable to programming quantum computers.

Chapter 7 details some of the algorithms designed to take advantage of quantum computers.
After starting with a sequence of toy problems which show off the power of quantum computers on
certain kinds of problems, the chapter concludes with a discussion of Shor’s fast factoring algorithm
and Grover’s unsorted database search algorithm, both of which achieve dramatic speedups over
the best known classical algorithms for problems of general interest. The results of chapters 2
through 6 provide the “how” of quantum computation. Chapter 7 provides the “why.”

Finally, chapter 8 briefly surveys other fields of interest within quantum computation before
concluding with a discussion of the future prospects of quantum computation.

Chapter 2

Mathematical Preliminaries

2.1 Introduction

We wish to describe and to create computations that produce answers to questions of interest.
The abstract existence of some value is not good enough: we require a procedure which terminates
by providing that value in intelligible form. For example, any formula of first-order logic has a
definite truth-value, but this mathematical guarantee is not a computational guarantee, and there
exist families of formulae whose truth-values are not calculable by any computational process.

First-order logic is an example of a mathematical system that has certain properties which are
not directly observable. Quantum mechanics postulates that only certain properties of physical
systems are directly observable. These properties can take on values from some specified set; when
we observe such a property, it has exactly one of those values. Further, if we observe some given
value for an observable property of a system, then — in the absence of some explicit intervention
— that property will continue to have that value on future observations.

These three facts —

1. that only certain properties of a system are observable,
2. that observations have definite outcomes,

3. and that identical repeated observations will have the same outcome —

are all we require to give an overview of quantum mechanics as it applies to computation.

2.2 The Classical Realm

2.2.1 A Bit

“Classical” systems, for our purposes, are those in which every physical property is observable. As
an example of a classical system, consider a bit. A bit has a single observable property and that
property can have one of two possible values. Let us call these values |0) and |1).

7

8 CHAPTER 2. MATHEMATICAL PRELIMINARIES

To be meaningfully observable, |0) and |1) must have some particular physical implementations.
If the bit is to be stored in a transistor switch, |0) could designate a transistor with output voltage
at or near five volts, and |1) a transistor whose output voltage is set near zero volts. If the bit is
stored on a punch card, |0) could designate the absence of a hole in a specified position, and |1) the
presence of a hole in that position. Other implementations would assign different physical states
to |0) and |1).

On the other hand, the symbols |0) and |1) are typically used to represent abstract mathematical
values according to some formal mapping. In a transistor switch with the active-low convention,
|0) denotes logical FALSE and |1) denotes logical TRUE. More typically, |0) and |1) denote the
numbers 0 and 1, respectively. In a register storing a binary number, a register with kth bit |1)
denotes a number which is 2% greater than the number denoted by the same register with kth bit
|0}, but the precise denotation of this bit cannot be established independently of denotations of the
other bits.

|0) and |1) provide a convenient middle layer between physical implementations and the abstract
systems these implementations model. These names allow us to speak about the computations
carried out by computational hardware without becoming bogged down in the details of any specific
implementation. They also allow us to use the same hardware to carry out computations on different
kinds of mathematical objects. In one context |1)|0) may stand for the ordered pair (1,0); in
another it may stand for the binary number 10. It is easier to specify the mathematical properties
of these objects in terms of names for particular physical states than in terms of the physical states
themselves.

2.2.2 States and Observables

A usual view of computational systems — and of systems in general — is that we specify some
space of possible states of the system, and the system’s actual state is then represented by a point
within that space. For each observable property of a system (usually called observables), we also
specify what value that property will have if the system is observed (such an observation is also
called a measurement) while in any given state.

Since a classical bit stores the distinct values |0) and |1), and these two states suffice to explain
the behavior of the system, we define its state space B, to be

Be = {10), |1)}. (2.1)
The notation B, is meant to suggest an abstract classical bit.

To be fully precise, we now specify, for each possible state in the state space, the value the bit’s
observable will have if that observable is measured. If the system is in state |0), the measurement
will produce the value |0); if the system is in state |1), the measurement will produce |1). This
claim seems trivial because the set of observable values is the same as the set of possible states.
We will soon see systems for which this equivalence does not hold, and we will need to give more
complicated rules for determining the values that result from measurements.

2.3. THE PROBABILISTIC REALM 9

2.2.3 Transformations

The state of a system is not static. There are usually many possible actions that will change the
results of future observations made on the system. If a bit is observed to have the value |0) and is
then fed through an inverter, the bit will have the value |1) if it is observed again. Abstractly, we
specify such operations or transformations by giving a function from the state space into itself. For
example, feeding a stored bit through an inverter is equivalent to applying the mapping F' given
by!

Floy=1) FI1) = [0). (2.2)

Initializing the bit to represent the constant value 1 is equivalent to applying the mapping G given
by

Gl0) = (1) G[1) = [1). (2.3)

The values of measurements taken before and after a transformation will, in general, be different.
Some systems will (under certain physical conditions) change state with the passage of time. These
changes can also be specified as such a transformation.

To review, let us think about this single-bit system in terms of our three principles. A generic
bit has one physical property, and one observable. A measurement of the system results in either
|0) or |1). Measurements do not produce some other value, say |fish), nor do they produce both |0)
and |1) simultaneously. Further, in the absence of some external altering force, once a measurement
has produced |0), the value of a future measurement will also be |0); similarly, a |1) remains a |1).

2.3 The Probabilistic Realm

2.3.1 States and Observations

Consider now a probabilistic bit. This system consists of a single, possibly unfair, coin. Again, this
system has a single observable: the outcome of the coin flip. This observable can take on the values
|0) and |1). However, B, is not a large enough state space to explain the behavior of a random bit,
since it has no way to represent “a bit which will have value |0) with probability p” for any p other
than zero or one. Thus, we define the state space B), of a probabilistic bit by attaching coefficients
to |0) and |1) that indicate the probability that a measurement of the bit will produce the value
|0) or |1), respectively. Formally,

B, = {ag|0) + a1|1) : ag,a; € R;al +a? =1}. (2.4)

Measuring a bit in state ag|0) + a1]1) produces the value |0) with probability a3 and the value
|1) with probability a?. We have specified the state of the system in terms of square roots of

In quantum mechanics, such transformations are usually specified using the applicative notation of linear algebra,
because such transformations, in general, are linear transformations.

10 CHAPTER 2. MATHEMATICAL PRELIMINARIES

probabilities (instead of probabilities themselves) for reasons that will be clearer later. The side
condition that a3 + a? = 1 ensures that the probabilities sum to 1.2

Suppose a measurement produces the value |0). Because repeated measurements must be con-
sistent, future measurements must also produce the value |0) with certainty. The only state in B,
which, when measured, yields |0) with certainty is 1|0) + 0|1). Therefore, we must conclude, that
the state of the system after the first measurement is 1|0) + 0|1). The act of measuring a system
changes the state of the system.

This is not as strange as it may sound. Examining the result of a random coin flip yields
information about that coin flip. The coin cannot possibly have a different value unless it is flipped
again. The bit had some probability of having the value |1), but now it has the value |0). A random
bit is only random once.

Our three principles are also still in force. Observations still have definite outcomes, since seeing
|0) and |1) are mutually exclusive events with probabilities summing to 1. Repeated observations
produce the same value. And not every property of the system is directly observable: there is no
way to directly observe a probability?. Gathering information about a system is an active, intrusive,
process: once we know that the bit is |1), we have “destroyed” the possibility that it will be |0)
when we look at it next.

2.3.2 Transformations

What does it mean to apply a transformation to this system? Consider the action of a bit-inverter
on the state ag|0) + a1|1), followed by an observation of the bit’s state. The following explanation
is tempting:

“With probability a2, the bit initially had value |0), was inverted to |1), and observed as such.
With probability a2, the value |1) is observed at the end. Note that the probabilities for each
outcome are the same as they would have been if the state a1|0) + ag|1) was observed directly.”

The problem with this reasoning is that the statement “with probability a2, the bit was initially
a |0),” requires a measurement. Thus, the above procedure is really a measurement followed by an
operation on the measured bit, whereas we were trying to capture the idea of an operation on an
unknown bit. It is not possible to “look into” the unknown bit in order to apply a transformation
to it. The result of of applying some operator to this state is another state of the system, one which
is equally opaque. The only way to extract information about the value of the system is to measure
it, which forces it to “collapse” into one value or the other. Until a measurement has taken place,
we have no legitimate basis for speaking about the bit as “having value” |0) or |1) . It is merely
in a state from which we will eventually be able to extract a value; that value will be |0) with a
certain probability and |1) with some other probability.

It would be possible to remove this side condition, but then we would need to introduce a normalization term
to the rules for measurement to make the probabilities of the different outcomes sum to 1. This normalization term
makes certain states, like 5|0) and |0) completely indistinguishable to any measurement, even under any possible
transformation to the system. Doing the normalization at the level of the state space, rather than at the level of
measurements, removes this redundancy.

3The best we can do is to infer those probabilities, with some chance of error and some degree of approximation,
based on the outcomes of measurements. For coin flips, these measurements are Bernoulli trials.

2.3. THE PROBABILISTIC REALM 11

This said, the “incorrect” heuristic for carrying out the bit-flip transformation gives us the right
answer: the bit-flip carried out really does swap the probabilities associated with each value. If T'
acts some way on |0) and some other way on |1), then we have all the information we need to figure
out how it acts on an arbitrary element of the state space:

T (ao|0) + a1|1)) = aoT|0) + a1 T'|1). (2.5)

We can reason carefully about the effects of changes to the system (in terms of the values that
observations will take), even under uncertainty about the status of the system.

2.3.3 The Linear Algebra of a Probabilistic Bit

Our definitions from above can be restated in more general and concise forms in the notation of
linear algebra.

By, is a subset of the vector space R?, and {|0),|1)} is a basis for this space. Let us impose on
R? the inner product

(ao|0) + a1]1}) - (bol0) + b1[1)) = aobo + a1b1, (2.6)
which induces the norm
lao|0) + a1 |1)[| = \/(a§ + a}) (2.7)

B, is the subset of R? consisting of all vectors with norm 1. We denote by P; the projection onto
the subspace spanned by [i), i.e.

Po(a0|0> + a1|1>) = a0|0) (28)
P1(a0|0> + a1|1>) = a1|1>.
Finally, we use the notation
probl|¢) — i) (2.9)

to stand for the probability of obtaining the value i) from a measurement of state |¢). Given
these definitions, the probability of obtaining a given value upon a measurement be rewritten in
the simpler form

prob[|g) — [i)] = | P;|4)]1*. (2.10)

To ensure consistency of future measurements, we would like to say that after measuring value |7)
from state |¢), the new state of the system is P;|¢). However, this state does not have norm 1, so
it needs to be properly normalized to

Bil¢)
[Pdtaln

(2.11)

12 CHAPTER 2. MATHEMATICAL PRELIMINARIES

By equation (2.5), we can characterize the possible transformations on B, as those linear transfor-
mations which preserve norm.*

Note that there is in general no way to distinguish between the states |¢) and —|¢p). Measuring
either of these states directly will give exactly the same probability distribution. Applying any
transformation 7' to these states yields the states T'|¢) and —T'|¢), which still produce identical
distributions of values when observed. We allow B), to contain these two distinct names, with the
understanding that they represent the same underlying physical state.

2.4 The Quantum Realm

2.4.1 States, Measurements, and Transformations

We now have all of the formal framework necessary to give an account of a quantum system. Let
us now consider the state space of the quantum analogue to a bit, the qubit. Instead being the
norm-1 subset of the real vector space R?, the state space is now the norm-1 subset of the complex
vector space C2. That is,

B, ={ag|0) + ai1|1) : ag, a1 € C,apay + aja] = 1}. (2.12)
The inner product here is the familiar
(a0|0) 4 a1[1)) - (bo|0) + b1[1)) = aobj + a1bi, (2.13)

which induces the norm

lagl0) + a1|1)[| = V/|ao|* + |a1]? (2.14)

Any state other than a basis element is said to be the superposition of those basis elements of which
it is a linear combination.

As in the probabilistic case, we specify a measurement in terms of projections onto the subspaces
spanned by |0) and |1). Equations (2.10) and (2.11) carry over unchanged. For By, we allow one
observable, which can have the value |0) or |1). If the state a|0) + a1|1) is measured, the value
observed will be |0) with probability apa} = |ag|? and |1) with probability aja} = |a1|*.

Physicists would maintain that B, has other observables (in fact, physicists would claim that
B, has an uncountably infinite number of observables). This is a case in which our practical
restrictions on what constitutes an “observable” property of a system are stronger than those on
the a physicist’s formal definition of “observable.” |0) and |1) are the only states of B), to which

4The properties of this measurement are entirely determined by the projection operators Py and P;. More generally,
if V is a vector space which can be written as the direct sum of subspaces Up, Ui, . ..Uy, and P; is the projection from
V onto U;, then these projections determine a possible measurement, which satisfies all the above equations. For our
purposes, this will be important principally in discussing measurements on pieces of larger systems: looking at one
piece of a system need not necessarily cause other pieces of the system to “collapse,” as well. Technically, one specifies
a self-adjoint operator; these subspaces are then the distinct eigenspaces of that operator. But this interpretation is
more general than we require. With a single canonical basis in which all our measurements are carried out, it is more
convenient to specify only the subspaces and not worry about a self-adjoint operator, which will be independent of
basis.

24. THE QUANTUM REALM 13

we can give a meaningful extensional description. Thus we insist that only the measurement which
produces |0) or |1) can be considered. This restriction does not affect the computational power of
our formalism (to carry out a measurement in another basis, it suffices to rotate into that basis and
then carry out a measurement in the basis {|0),]1)}). We call {|0),|1)} the computational basis.

The permitted transformations on this system are those which are linear and preserve inner
product®. Such transformations are called unitary and satisfy the equation

) - [9) = Ule) - Uly) (2.15)

for all |¢), |1)) € By. Unitary transformations preserve norm and are invertible. Further, a trans-
formation is unitary if and only if it is a bijection between two orthonormal bases. The identity
transformation I is unitary: it takes the computational basis to itself. The negation transformation
N, which takes |0) to |1) and vice-versa, is also unitary, as it permutes the computational basis.

Any linear transformation can be given in matrix form (with respect to a given basis); we will
frequently find it convenient to do so. For example, with respect to the computational basis, I and

N have matrix representations
10 01
I_<01>N_<10>. (2.16)

There are also more exotic unitary transformations which have no classical counterparts. For
example, consider the conditional phase shift, which leaves |0) unchanged but shifts the phase of

1) by
S,,:<(1) e‘i):(é _01) (2.17)

For any state |¢), measuring (in the computational basis) |¢) and Sy|¢) will produce completely
identical distributions of values. Nonetheless, |¢) and S;|¢) are different physical states, and
applying other transformations after S; can produce observably different states. We shall see an
example of such a situation in the next section.

Another important unitary transformation is the Hadamard rotation H given by

55 5 1 (1 1
H:(@ ﬁ):—<1 J. (2.18)
viowva) V2l
The Hadamard rotation has been called the quantum “fair-coin flip,” since it takes |0) to the state

%|0) + %H), which has equal probability of yielding |0) and |1) if it is then measured. However,
H has a number of other interesting properties, as we shall see.

2.4.2 A Quantum Example

We now examine an example that will demonstrate that the quantum picture of the world is not
reducible to a classical one. Consider the two states

X) = Z510) + 5[1) |Y) = Z5j0) — Z510). (2.19)

>This constraint follows from the dynamics of quantum systems, governed by the Schroedinger equation. time-
evolution of a quantum system.

14 CHAPTER 2. MATHEMATICAL PRELIMINARIES

Measuring either of these states yields the values |0) and |1) with equal probability. In terms of
this measurement, |X) and |Y') are indistinguishable.

On the other hand, applying the Hadamard rotation H to these states yields

HIX) = H(%0)+5I1)

and (2.20)
HY) = H (ﬁm + 511
= (S0 +) - 5 (S0 - L)

:|1

Measuring H|X) produces the value |0) with certainty; measuring H|Y) produces the value |1)
with certainty. These two states, indistinguishable to direct measurement, nevertheless can be told
apart by first applying an operation and then measuring. This is typical for quantum systems:
often it is only the relative phase of two components of the state which carries information.

Although information is neither created nor destroyed by unitary transformations in a quantum
system (because quantum systems are reversible) the information contained within a system may
be more or less accessible depending on how that information is stored and how the system is
measured. Measuring the |X) or |Y') states directly provides no information about the state of the
system. Measuring a large number of copies of this state (either all |Y) or all | X)) does not even
produce any statistical information as to whether they are | X) or |Y).

Another way of characterizing this equivalence is that the “collapse” of the system induced
by our measurement “destroys” one bit of information. On the other hand, applying H and then
measuring extracts the full one bit of information present in the system. Since measuring |0) yields
the value |0), the measurement causes no further “collapse” and no information is destroyed.

2.5 The Hadamard Rotation

The transformation H introduced in the previous section has a number of very interesting proper-

ties. First, it is self-inverse:
= (&G0 a2
V2 1 -1 1 -1
1
0

a fact which “explains” the previous example. In terms of this identity, we can rewrite (2.20) as

H|X) = H?*0) = I/0)=|0) (2.22)
H|Y)=H*1) = I]1)=]1).

2.5. THE HADAMARD ROTATION 15

We already know that any unitary transformation takes a basis to another basis; the Hadamard
rotation has the useful property of mapping back and forth between two especially useful bases. H
takes the computational basis

0) 1) (2.23)

to the Fourier basis®

[L0+ 5D . - 5.) (2:24)

and vice-versa. It is customary to refer to this mapping between bases as a rotation into and out
of the Fourier basis.

The only difference between the two elements of the Fourier basis is the relative phase of the
|0) and |1) components. As we have seen, relative phase differences are not directly measurable,
but this does not mean that they are irrelevant (as global phase shifts are). In many quantum
algorithms, almost all the information in a given state will be encoded in relative phase differences;
Hadamard rotations or other changes of basis will then convert the phase differences into a directly
observable form.

For example, consider the controlled-phase shift operator S on the Fourier basis states:

1 1 1 1
&(ﬁm+ﬁm)=fﬁm—ﬁm (2.25)

1 1 1 1
5. (510 = J5l0) = 210+ 5l
Sy thus interchanges the two basis elements in the Fourier basis, even though it is diagonal in the
computational basis. Thus, another way to implement N (the negation operator, which swaps |0)
and |1)) is to rotate into the Fourier basis, use Sy to interchange the elements of the Fourier basis,
and then rotate back into the computational basis. Since H converts between computational and
Fourier basis, this observation yields the identity

HS.H = N. (2.26)

In practice, this identity is more useful in the alternate form S; = HN H, obtained by exploiting
the self-inverse property of H. Phase shifts are computationally useful because they can contribute
to non-trivial interference effects. A bit flip can be converted to a phase shift by applying it to a
qubit in the state %|0) - %H), because

1 1 1 1
N|{—|0) — —|1)) = ——|0) + —
(-) =75+ 2
A bit-flip has been converted into an overall multiplication of the phase by —1 7. When combined
with superposition, such phase shifts are central to quantum algorithms. To see how superposition

and phase shifts interact in these algorithms, we will need to examine quantum systems larger than
a single qubit.

1. (2.27)

5The Fourier basis is so named because it is the natural basis in which to carry out discrete Fourier analysis using
quantum algorithms. We shall meet such algorithms later, in chapter 7.

"Technically a “phase shift of ,” because e!™ = —1, a perspective that arises by thinking of quantum states in
terms of polar coordinates.

16 CHAPTER 2. MATHEMATICAL PRELIMINARIES

2.6 Larger Quantum Systems

Consider the following characterization of By: “B, is the set of norm-1 vectors in the complex vector
space with basis B..” Generalizing this construction yields a characterization of more complicated
quantum systems in terms of their classical counterparts.

Specifically, consider an n-bit register, constructed from n single-bit registers, i.e. copies of B,.
Classically, this register can have any of 2" possible values, one corresponding to each choice of the
value |0) or |1) for each of the individual registers. Thus, the state space B™ of a classical n-bit

register is the set

(10)...10)[0)
0} ... 10)|1)
0)...11)|0)
BMW =2 [0} D) % = {|z0)|z1) ... |2n_1) : z; € {0,1}} (2.28)
|1)...11)|0)
L (1) [D(1))

For the sake of brevity, and to indicate that these states are states of a larger system, we will
sometimes use the notation

|z) = |zg...xn_9wn_1) for |zo)...|Tpn_2)|Tn_1). (2.29)

The state space B,gn) of an m-bit quantum register, then, is the set of norm-1 vectors in the

(n)

complex vector space with basis B.".8. Formally,

B =2 3" afz)ia, €C Y JaP=1p. (2.30)

ze{0,1}" ze{0,1}"

Since each qubit in this system has an observable value, the observables for the register as a whole
are the value of any specified qubit In measuring qubit ¢, the projection P, is the projection onto
the subspace of Bén) spanned by those elements of Bén) in which qubit i has value |0); P; is defined
similarly. At this point, the usual equations (2.10) and (2.11) apply to determine the probability of
each outcome and the state of the system after a measurement. More complicated measurements
can be built up by measuring several qubits in succession. It is easy to check that measuring every
qubit gives outcome |z) with probability |a,|?.

Btgn) is a 2"*'-dimensional vector space, so the possible transformations on it are the 2"*!-
dimensional unitary transformations. Of particular interest, however, is the subclass of those
transformations which can be induced by acting on one bit at a time.

Consider the act of flipping a single bit (for notational convenience, the leftmost) in an n-bit
classical register. This transformation is an action that involves one bit, so it can be considered as a

8More formally, Btg”) is the tensor product of n copies of Bj.

2.6. LARGER QUANTUM SYSTEMS 17

mapping N : B, — B.. However, N also induces a map Ny : Bé”) — Bé”), obtained by computing
the effect on the register of applying N to the leftmost bit:

0...00) — [1...00)
0...01) — [1...01)

No

: (2.31)
1...10) — 0...10)

1...11) —]0...11).

Because Vg is defined for every element of a basis for Bén), we can linearly extend Ny into a map

Ny : B{" = B{":

No (Z a$|x)> = a.No|z) (2.32)

x

More generally, it is possible to extend a transformation 71" : B, — B, which acts on a single

(n)

qubit to a transformation 7" : B,gn) — By’ which acts on an entire quantum register. The action
of T(™ on an element of Bé") can be determined by applying T' to the appropriate qubit of that
element and leaving the other qubits unchanged. The action of T on an arbitrary element of

Bén) follows by linearly extending its action on Bé").

As an example, consider a two-qubit system B§2), with basis
{100),]01),[10),[11)}. (2.33)

A Hadamard rotation applied to the first qubit induces the map

1 1
00) — ?|oo>+?|10)
01) — ?|01)+?|11) 230
110) — ?|oo>—?|1o>
1) = LSjor) - L),

Single-qubit transformations are not the only ones which can be extended to work on entire
registers in this way; it is also possible to specify a transformation which acts on two more more
qubits and apply it to an entire register. In this case, just as before, the action of the transformation
on a basis element is calculated by examining the action of the transformation on those qubits it
explicitly affects.

An example of a transformation which cannot be reduced to a single-bit transformation is C,
the controlled-NOT transformation, which flips the state of one qubit if and only if another qubit
(the “control” qubit) is in state |1). That is, C acts on B as

— 100

))
) —)

110) — [01) (2.35)
) —)

18 CHAPTER 2. MATHEMATICAL PRELIMINARIES

where the left qubit is the control qubit. Notice that C' permutes the elements of B§2), and thus
is unitary. More importantly, C would not make sense as a transformation on either of its input
qubits alone.

With multiple-qubit transformations such as C, it is possible to create entangled states, in
which the correlation between two pieces of a system is important, not just their individual states.
Consider the following sequence of transformations. Starting from the state |00), applying H
produces the state %|00) + %HO). Applying the negation gate N to the second qubit, of this

state, by (2.31), would then yield the state

1
V2

This state is not entangled: it can be written as

1

|01) + 7

111). (2.36)

1 1
<ﬁ|°> + ﬁ“))). (2.37)

The first qubit is in state H|0), the second qubit is in state |1), and the state of the entire system
can be “factored” into the states of the two individual qubits. Applying C to this state, however,
yields the state

)+ (2.38)

1 1
—|01) + —|10),
75100+ 10

which is entangled.

Measuring the first qubit produces values |0) and |1) with equal probability. If the value is |0),
then the overall state of the system, projected onto the vector space with basis

{100),[01)}, (2.39)

and then normalized, will be |01). The state of the system has become |01), so that any measurement
of the second qubit returns |1) with certainty. Contrariwise, measuring |1) for the first qubit means
that the second qubit has value |0) with certainty. Measuring either qubit fixes the value of the
other, as well.

Examined independently, each qubit has equal probability of being |0) or |1), but this view
does not describe the correlation between the two qubits: their values upon measurement are not
independent random choices. This correlation is non-local, in that the two qubits could be spatially
separated and will still display this perfect anti-correlation no matter when they are measured
relative to each other.

2.7 Measurements

Entanglement provides another perspective on measurement. Consider what happens if a system
is entangled with another system that is then permanently isolated from the original system. The

2.7. MEASUREMENTS 19

first qubit is the system of interest; the second qubit will be a “measuring device” qubit. Having
created the entangled quantum state

)10) + (2.40)

1 1
—10 —|D|1
751000+ DI,
suppose that the second qubit is moved to an isolated location. At this point, no “local” transforma-
tion affecting only the first qubit can remove the entanglement. Applying a negation transformation
N to (2.40) produces the state

)0) + (2.41)

1 1
E'l E|O)|1>-

Applying the Hadamard rotation H to (2.40) produces the state

1 1 1 1 1 1
(5100 + 751) 75100+ (5100 = Z510) sl (2.42)

Only states of the form

1
X- E|0) +Y) (2.43)

Ly
V2
can ever result from (2.40) by any sequence of transformations on only the first qubit. Fixing the
second qubit means that the two terms of the superposition can never interfere with each other.
Any eventual measurement of the first qubit will produce some state drawn from either X or Y,
with equal probability, which will then induce the second qubit to “collapse” to |0) or |1), as though

it had been measured directly.

Because there can be no interference between X and Y from the separation until the measure-
ment, it is mathematically and physically equivalent to regard the measurement of the second qubit
as taking place at the moment of separation. It is easy to check that exactly the same distribution
of outcomes results from the post-transformation measurements if the qubits are also measured
at the moment of separation or if they are not. The act of irrevocable entanglement is effectively
equivalent to an immediate measurement.

Because quantum systems evolve in a unitary manner, no transformation creating entanglement
is ever technically “irrevocable.” But it is very easy to create certain transformations which are
irreversible for all practical purposes. Macroscopic objects have enormous numbers of particles,
each a quantum system that interacts with its many other quantum systems in complicated ways.
The individual quantum effects of particles in macroscopic systems are dwarfed by the classical
statistical effects of large numbers of particles interacting. Once a quantum system has become
entangled with a macroscopic system, the transformation undoing that entanglement is prohibitively
difficult to compute. Thus, entangling a quantum system with a classical one is, for all practical
purposes, an irreversible entanglement, and therefore is tantamount to an immediate measurement.
Put another way, if one wishes to measure a quantum system, entangling it with a macroscopic
classical system suffices.

The flip side of this characterization of measurement is that it is important to avoid inadvertently
entangling a quantum system with its environment during the course of its computation. The
“interesting” quantum effects we have discussed at length are dependent upon the system’s ability

20 CHAPTER 2. MATHEMATICAL PRELIMINARIES

to maintain a coherent superposition of states: measurement, by collapsing the state into one value,
destroys such superpositions. Thus, because entanglement with the environment is tantamount to
measurement, such entanglement must be avoided when measurements are not being deliberately
taken. The hardest part of constructing a quantum computer is usually isolating the qubits from
their (classical) environment well enough to prevent them from becoming entangled with that
environment.

2.8 A Bit of Philosophy

This section is not strictly necessary for an understanding of the material in subsequent chapters.
It is provided for the reader who is unsatisfied with the accounts of measurement given above, or
who is curious about the philosophy of quantum mechanics.

Everyday experience appears to claim that the universe is not in the state —-(|0) + |1)), but

is most definitely in |0) or |1). In our first account of measurement (in ordf to ensure that
measurements had consistent outcomes) we postulated that measurements are accompanied by a
“collapse” into the measured state. These collapses are fundamentally non-unitary — they map
states to probability distributions of states. Reconciling this view with the physical claim that
quantum systems — which here include the entire universe, as the composition of many smaller,
interacting, quantum systems — always evolve according to unitary constraints, is a major topic
of heated debate in the philosophy of physics.

Much attention has been given, therefore, to attempting to explain precisely what must consti-
tute a “measurement,” why collapses do not really take place, why our everyday experience is in
error, or some other resolution of this antinomy.

From the point of view of quantum computation, it is not necessary to resolve this question to
carry out interesting computations. We have seen two accounts of measurement. In one, collapses
take place when measurements occur, and those measurements take place when a sufficiently “large”
device carries them out. In the other, no collapses take place, “everyday experience” is in error,
and the universe exists in a superposition of the outcomes of an unimaginably large number of
interactions. Although neither answer is philosophically acceptable, at least as presented here,
they provide mathematically equivalent predictions of the results of “computations,” considered as
some sequence of unitary operations and measurements on an otherwise isolated quantum system.
To the extent that any coherent philosophical point of view gives a definition of a “system” and
a “measurement,” the predictions of both our accounts will be consonant with that philosophy’s
predictions. In keeping with the pragmatic spirit of our discussion of quantum computation, these
accounts are good enough.

Chapter 3

Quantum Hardware

3.1 Overview

There are certain requirements generally agreed to be the minimal set of operations a quantum
computer must meet. They fall into two categories. First, there are the “gates” such a computer
must implement: the mathematical operations that it promises to carry out on encoded qubits. As
discussed in chapter 4, a set of gates which includes all one-qubit operations and a controlled-NOT
gate will be universal. Thus, a quantum computer should be able to apply arbitrary rotations to
single qubits and to alter the state of one qubit when a second qubit is in its |1) state.

Second, there are the physical requirements necessary for a quantum computer to implement
in practice the transformations in its theoretical repertoire. These requirements are:

e Opacity: It must be possible to apply the above basic transformations to qubits without
inspecting their state. If this requirement is not obeyed, the classical apparatus carrying out
the transformations will become entangled with the quantum system, negating its uniquely
quantum aspects.

e Size: The system must contain a number of distinct qubits. The estimate of number required
for useful applications varies, but an implementation of Shor’s factoring algorithm for numbers
of interesting size would require several thousand qubits.

e Addressability It must be possible to operate individually on arbitrary qubits without apply-
ing the same transformation to other qubits in the system.

e Stability: The qubits must, within some “acceptable” error bounds, retain their current state
when they are left alone, and the implementations of the transformations must not differ
too much from their theoretical specifications. Unless a computer actually “does what it
claims to,” it is practically useless. This is a particular issue for quantum computers because
their scale is so small and sensitive, and because traditional error-correction techniques are
inapplicable to them.

e Measurement: Although the system should be opaque during operation, when a measurement
is required, it must be possible to carry one out. It should ideally be possible to measure the
state of (almost) any qubit whether directly or indirectly.

21

22 CHAPTER 3. QUANTUM HARDWARE

In those implementations under current experimental consideration, stability is the chief ob-
stacle. The rapid decoherence of quantum systems interacting with their environments acts as
an upper bound to the size of those systems. Addressability is less of a problem currently, but
could become considerably more of one if the frontier of the scale of systems that can be stabilized
advances.

Different implementations have different schemes for meeting these requirements, and these
different techniques are better and worse at some of them. In this chapter we shall survey the
leading proposed mechanisms for creating quantum computers in the laboratory, and discuss how
well they have met the various criteria so far, in theory and in practice. lon trap methods and
those based on nuclear magnetic resonance technologies have enjoyed the most success and appear
to be the most promising avenues of research, so we shall discuss them at greater length than some
of the more exotic proposals.

3.2 Ion Trap

Consider a set of identical ions of precisely known mass and charge. These ions will respond in
predictable ways to electric fields. In particular, if we can create a (two-dimensional) potential well,
such that energy is required for them to move away from a certain preferred position, it will be
possible to “trap” ions in that position. If the ions are then cooled to the point at which quantum
effects become dominant, each individual ion can be used to hold one qubit.

The experimental construction of ion trap devices has been principally concerned with linear
ion traps, in which the “bottom” of the potential well takes the form of a linear region in space. The
electric field necessary to make ions gravitate to this line can be created by paralleling it with four
electrodes (at the four corners of a square of which the preferred axis is the center). By putting
an alternating-current potential through the electrodes at a high frequency 2,, a cylindrically-
symmetric electric field is created, in which positive ions are drawn to the central axis' A small
static (DC) voltage is then applied to the ends of the electrodes to prevent the ions from escaping
through the “ends” of the trap. Since the ions are all positively charged, they repel each other and
will space themselves out roughly evenly along the axis.

The above procedure suffices to confine the ions in an axial region of at most about a millimeter
in diameter (starting off with “hot” ions with a great deal of energy). For quantum effects to
dominate, they must be cooled to a temperature at which their possible energy levels are both
quantized and predictable. Two distinct energy states of the ion are used, one representing |0)
and the other representing |1). In practice, this means the ions must be cooled to very near their
“sround state,” the lowest admissible energy state, for the states to be stable and distinguishable.

This cooling can be carried out by means of laser pulses of very carefully-controlled radiation
frequency, which encourage the trapped ions to release energy. Forced-evaporation techniques
similar to those used to produce Bose-Einstein condensates are also theoretically attractive, but
have had less success in practice thus far. In any case, once the ions are cooled, they are individually
localized ? within non-overlapping regions of diameter a micrometer or less.

'The particular choice of Q, depends on the charge and mass of the ion to be used. For **Ca™, for example, a
few megahertz at an amplitude of about £9 volts would be used.

2 At this scale, ions display significant wave-like features, so this localization is really a bound on the wave-function
of the ion.

3.2. ION TRAP 23

With this separation, it is possible to address any individual ion with laser pulses; these pulses
can implement any desired unitary transformation on the single qubit represented by that ion.

The trickier case is enabling qubits to interact; it is not possible, in general, to bring an arbitrary
pair of qubits into proximity, since their locations are more or less fixed during the course of the
computation. Instead, the usual approach is to create an additional qubit capable of interacting with
any of the ion-stored qubits we choose. Because this qubit carries information between arbitrary
qubits, it is referred to as a “bus” qubit.

Since the bus must be able to interact with any of the ions, the standard technique is to encode
it using a property of the ions collectively: the vibrational motion (i.e. energy level) of the center-of-
mass of the ions. The lowest energy level (the “ground state”) is |0) and a particular higher-energy
state serves as |1).

Because it is implemented so differently from the other qubits, the bus suffers from some lim-
itations: it cannot be directly addressed in the same way the others can, nor can it interact with
the others in very many ways. The options available, however, suffice for our purpose of conveying
information back and forth between qubits stored in the ions.

It is possible to issue a laser pulse to an arbitrary ion which swaps the value of the qubits held
by that ion and by the bus. More precisely, if it takes energy at a laser frequency w for the ion
to switch between its energy states and it takes energy at frequency v to raise the center of mass
from its ground state (representing |0)) to its excited state (representing |1)), then a laser pulse at
frequency w — v allows only two kinds of transition. Either the ion goes from its |1) state to its
|0) state and the center of mass goes from |0) to |1), or vice-versa.

It is also possible to make the phase rotations applied to qubits conditional on the state of the
bus: only if the bus is in state |1) does the rotation take place. By using the standard trick for
converting between bit-flips and rotations, these conditional rotations, together with unconditional
rotations and the swaps described above, suffice to implement a controlled-NOT gate between two
qubits stored in ions.

qo
swap swap
bus
Ry
q1 I O I
(3.1)

Since a controlled-NOT gate plus the complete set of one-qubit gates is universal for quantum
computation, the ion trap is universal in simulating quantum circuits.

A qubit can be measured by illuminating its ion with radiation of a wavelength which would
cause the ion to jump from its |1) state to a considerably higher energy state which does not
otherwise participate in the computation. If the ion is indeed in the |1) state, it will resonate with
the applied radiation and will fluoresce. If it is in the |0) state, no such resonance will take place.

3The duration of the pulses is also important, because it affects the amount of time under which the system evolves
according to the induced Hamiltonian. For our purposes, though, we only need to consider the cases in which the
pulses are time to cause evolution through = radians.

24 CHAPTER 3. QUANTUM HARDWARE

Thus, by seeing whether light is emitted by the ion in response to a particular applied wavelength,
it is possible to measure the state of the qubit stored in that ion.

The main source of error for an ion trap device, at present, is experimental uncertainty. Small
errors in the laser frequencies, vibrational motion of the ions, and imprecision in controlling the
electro-magnetic fields within the apparatus all have the effect of “heating” the ions and raising
their energy. If an ion gets too “hot” it may enter a state other than |0) or |1), thus introducing
an essentially irreparable error into the computation.

It is these errors, which scale with the number of qubits and the number of operations carried
out, which currently place limits on the scale and duration of computations using ion trap de-
vices. Theoretical estimates, based on the degree of control available with present technology, are
that for a ten-qubit system, no more than about 200 operations can be carried out. Experimen-
tal implementations, to date, have achieved substantially fewer operations than even this modest
number.

The good news is that most of these issues are primarily ones of precise control over wavelengths
and of the quality of the isolation of the experimental apparatus from its surroundings. With
improvements in these technologies, the above limits may well be loosened. The next serious
theoretical obstacle faced by ion trap computation is spontaneous photon emission: the odds that
a cooled ion will spontaneously emit a photon (and thereby change energy level) depend principally
on the length of time that the ion has remained in that state. The particular choice of ion and
trapping frequency, as well as several other more-or-less fixed parameters set an upper limit on the
number of computational operations that can be carried out in a given amount of time. Numerically,
for computations taking a few hundred basic operations, the odds that one of the ions will emit a
photon are negligible, but for computations on the order of a million operations, these odds become
significant.

3.3 NMR

The nucleus of an atom that is part of a larger molecule will have certain resonant frequencies
at which it is able to vibrate. These frequencies are determined by the structure of the molecule
near the atom; they depend on factors that include the weights of the various nuclei to which it is
bonded and the electrostatics of the molecule in the region near this particular nucleus. In general,
for a molecule with asymmetries, the different nuclei will have different resonant frequencies.

Organic chemists have long exploited this phenomenon by employing the techniques of nuclear
magnetic resonance (NMR) to determine molecular structure. A sample of an unknown organic
molecule is placed in a solvent whose resonant frequencies are few, known, and unlikely to lie
near those of any nucleus in the mystery molecule. Magnetic pulses over a range of frequencies
are applied and those frequencies at which some constituent of the molecule resonates are noted.
This information is then used to reconstruct the structure of the molecule: different components
of organic molecules have different “signature” patterns of resonant peaks.

It is also possible to regard the different nuclei in a molecule as individual quantum systems
each capable of storing a qubit. Each nucleus has a slight magnetic polarization y. Information is
encoded in the direction in which the nucleus is oriented. A stable magnetic field is applied to the

3.3. NMR 25

NMR chamber as part of the overall NMR process: a nucleus oriented towards the field is in the
|0) state, while a nucleus oriented away from the field is in the |1) state.

Precisely applied radio-frequency pulses of the proper orientation, frequency, and duration will
cause nuclei that resonate at that frequency to rotate their magnetic orientation Given our encoding
for individual qubit states, most important single-qubit gates can be implemented with one to
three pulses aligned with the z,y, or z axes (making them especially convenient to implement).
Because the different nuclei in a molecule have different resonant frequencies, they are individually
addressable; a nucleus will not respond to pulses off its resonant frequency.

Multiple qubit interactions are somewhat more complicated to describe. In outline form, the
spins of two adjacent nuclei can be “coupled” to each other, so that in the absence of pulses their
states will evolve in a way that depends on the value of both. By controlling the amount of time
they are allowed to evolve in this way, two-qubit rotations can be implemented.

Measurement of a nucleus consists in applying a pulse at the resonant frequency along the |0)-
|1) axis: nuclei in these two states will produce resonance lines of opposite sign, so that they can
be distinguished. This is the stage at which the bulk nature of NMR computation enters: in order
to produce a detectable output, a large number of molecules are required. Typical experimental
implementations use solutions with molecular concentrations on the order of 100 millimoles per
liter. There has been some thought that smaller sample sizes might have certain advantageous
properties (more easily cooled to under 1 Kelvin, smaller experimental apparatus, etc.), but at
present sample size does not pose a serious obstacle to NMR computation.

Instead, the real difficulties with NMR computation arise from trying to scale up the number
of qubits involved in a computation. Experimental work has focused on molecules with only two
or three nuclei of interest. The resonant frequencies and the relevant coupling frequencies for these
nuclei are easily determined, and the rest of the molecule essentially does not interact with them
during the computation.

To support a hundred-qubit system, a molecule with well over a hundred atoms is required
(since not every atom will have suitable resonance properties). Further, the resonant frequencies
for each of these atoms (as well as a great many precise details about their interactions with each
of the other atoms) must be known in order to calibrate properly the pulses, which will need to be
at many different frequencies. To make matters even worse, there is no way to couple two nuclei
from remote parts of the molecule directly: two-qubit gates may be applied only to adjacent nuclei,
meaning that any computation will have to be arranged in a way that intimately depends upon the
topology of the molecule being used.

The most promising response to this difficulty has been the idea of using polymers as the
molecules in NMR computing. The advantage of using a polymer is that many of its nuclear sites
are locally indistinguishable, so that the proliferation of resonant frequencies is limited and the
topology of the molecule is radically simplified. The disadvantage of using a polymer is that many
of its nuclear sites are locally indistinguishable, so that they are no longer individually addressable.

The way around this limitation proposed by advocates of the polymer strategy is to use a
polymer with some distinguished nuclei that are addressable by different frequency pulses than the
nuclei in the unadorned polymer units are. The question then becomes how to move arbitrary
qubits to the nuclei where they can be individually manipulated.

26 CHAPTER 3. QUANTUM HARDWARE

One answer to this question is to use a polymer that has some pattern of individually adjacent
nuclei which repeat, i.e. ... ABCABCABC..., and then to issue pulses which will cause all of
the nuclei of the same type to respond in the same way. For example, a set of pulses which swap
the values of the qubit at an A nucleus and at its B neighbor, followed by a set which swap B
with C and then C' with A, will send every qubit at an A site to the next A site along the chain.
This technique makes it possible to “rotate” different qubits into and out of an active site — a
nucleus which can participate in the ABC resonances, but also has some other resonant frequency
at which it can be individually addressed. This model is in some ways like a cellular automaton?,
in which the cells update in parallel in response to their local situations. It is also in some ways like
a Turing machine, in which an active “head” moves along a passive “tape.” Here it is the “tape”
which moves, while the “head” remains stationary.

Although such a technique does promise truly scalable quantum computation, in the sense that
it can be extended to an essentially arbitrary number of qubits, there are some enormous technical
hurdles to this project. Finding a suitable polymer is a very difficult prospect.

Experimenters have had more success to date with NMR than with any other quantum comput-
ing technology: devices of two and three qubits have been constructed and have successfully carried
out several of the important quantum algorithms, including Deutsch’s and Grover’s. These devices
typically employ either a molecule with two atoms, or a molecule with two or three nuclei with
resonance properties very distinct from those of the other nuclei in the molecule. Extremely little
progress has been made towards realizing experimentally any of the polymer-based NMR schemes.

3.4 Photonics

The above proposals have taken the circuit model as a metaphor: the circuit becomes a sequence
of operations applied to more-or-less stationary qubits. Optical quantum computation takes the
circuit model at face value: the circuit is a physical device through which qubits travel from input
towards output.

In optical quantum computation, qubits are stored in the physical state of individual photons,
in particular, the position of those photons. Since photons will most definitely not sit still, they
are instead fed through a fixed (and macroscopic) set of circuit elements which act on them in
predictable ways. In the appealing dual-rail model, each photon is allowed two possible paths along
which to travel: one of those paths is |0) and the other is |1).

The gates which act on a qubit are along one (or both) of its paths. A NOT gate, for example,
just crosses the paths. Inserting a phase delay on one path but not the other implements a condi-
tional phase-shift. A Hadamard rotation is a beam-splitter that evenly splits an incoming waveform
along its two output paths. Fredkin and Toffoli gates are also straightforward in principle to create,
making a photonic device a universal quantum computer.

Optical devices have several strengths as quantum computers. It is very easy to place photons
in the superpositions needed for such devices. Single photons (as chargeless and massless parti-
cles) do not become entangled with their environments as easily as larger systems do. Also, the

1Lloyd, picking up on this idea, uses it to develop a proposal not just for quantum computation but for massively
parallel quantum computation, which could be a way around the inefficiencies of micro-scale quantum computation.

3.5. QUANTUM DOTS 27

devices involved have been successfully showing off simple quantum phenomena for years: optical
experiments have been the prime source of the laboratory confirmations of quantum-mechanical
wierdness which populate the pages of popular science magazines.

Most of these advantages, however, carry explicit tradeoffs. It is considerably more difficult to
cause photons (as massless and chargeless particles) to interact than it is to cause larger systems
to interact. Because photons travel at the speed of light, if minor imprecisions in the spacing
of experimental apparatus cause two photon paths to the same point to have different lengths,
their times of arrival can be so different as to prevent the necessary interference between them.
The precision necessary to create larger quantum circuits will also require advances in single-
photon technology significantly beyond that presently available, since these small errors cascade in
unfortunate ways,?, and current technology introduces a number of approximations to some of the
gates.

One interesting proposal is to use a single photon to carry multiple qubits by taking any of
2™ paths if it simulates n qubits. This construction, since it grows exponentially with the size
of the system, is clearly unsuitable for general large-scale quantum computation. However, as
simulation technology for analyzing small quantum circuits, it avoids this exponential blowup by
only considering small values of n. For small values of n, as well, the limits of optical technology are
less restrictive, so that photonics might well be the technology of choice for confirming small-scale
phenomena of quantum algorithms.

3.5 Quantum Dots

Quantum dots, if successfully implemented, would represent the ultimate achievement of solid-
state physics: the successful creation of semiconductors that operate entirely at the level of single
electrons. A quantum dot is a small region of semi-conducting material doped precisely so as to
have room for exactly one extra electron. Qubits are then encoded by the states of the electrons on
individual quantum dots. Of all proposals for quantum computation, quantum dots come closest
to the theoretical model of a cellular automaton.

The physical descriptions of such systems are quite complicated, more so even than for the
other models we have been discussing, nor is there general agreement on the best ways in which to
implement specific transformations on the qubits stored in quantum dots. The presence or absence
of an electrostatic barrier between two dots, it has been suggested, could selectively permit or
prevent them from coupling, thus allowing for some multiple-qubit gates. The application of very
precisely-controlled electro-magnetic pulses could also cause various evolution to take place in the
state of an individual quantum dot. Given the extremely small tolerances for such transformations
and the nanoscale at which they take place (since the dots must be close enough to each other to
interact), it has been suggested that these barriers and pulses could be administered by auxiliary
quantum dots which are themselves classically controlled.

There are some extremely serious obstacles to the implementation of actual quantum-dot com-
puters, most having to do with the small scale at which it must be carried out and the stringent

SError-correction schemes for quantum computers strive to correct errors in which one quantum state is substituted
for another: |0) for |1), or —|0) for |0) for example. But the errors that accumulate in an optical device are errors of
timing, for which no error-correction scheme can correct.

28 CHAPTER 3. QUANTUM HARDWARE

requirements on the physical properties of the substrate at the near-molecular level. The problem
of measuring qubits is a tricky one: proposals involve exploiting phenomena like electron tunneling,
in which an electron “jumps” from one location to another through an intervening barrier. Current
semiconductor fabrication technology is not even close to good enough for the demands of quantum
computation. Advances are also probably necessary in the technology required to effectively control
quantum dots (by creating very carefully modulated and located electro-magnetic fields).

On the positive side, quantum dot technology is the direction in which semiconductor research is
headed, of its own accord. The circuitry in use in present computers is pressing up against the scale
at which quantum effects — especially electron tunneling — begin to become significant enough to
appear as errors in classical computations. From the perspective of quantum dots, these “errors”
are the real computation. Whether or not quantum dot technology will ever succeed in realizing
quantum computation, it does mark an interesting frontier between more traditional computing
technology and quantum computation.

3.6 Anyons

The usual fault-tolerance model for quantum computation is to take the errors from the “hardware”
level as a given and to impose a level (or levels) of error-correction in “software.” Kitaev’s proposal
for quantum computation using anyons is an attempt to create a quantum computer which is
intrinsically fault-tolerant.

Schematically, the problem with encoding information in “ordinary” quantum properties like
location or orientation of spin is that uncertainty effects and environmental interactions perturb
quantum systems in ways which cause large variations in those properties. Anyons encode informa-
tion in “topological” properties of quantum systems, which are exponentially insensitive to errors
in position.

Anyons exist in a two-dimensional system, in which their motion is confined to a plane. To
change the information carried by a particle, that particle must be carried entirely around another
particle.® If the two particles are separated after this carrying-around, a great deal of decoherence
can take place in their positions without affecting the information that the one has been carried
around the other.

The constructions of qubits and gates from these details are rather technical — in particular,
multiple particles are required to store a single qubit and the operations required to carry out
the basic transformations are somewhat complicated — but an anyonic system can implement the
necessary primitive gates to make it a universal quantum computer.

What is more of a concern is that an anyon-based quantum computer is, for all practical
purposes, impossible to realize physically. First, because space is three-dimensional, the two-
dimensional existance of anyons is something of an issue. More importantly, the number of spin
dimensions required by an anyon carrying out “interesting” computation (a Toffoli gate) is very
high: 60, in comparison with the more convenient two possessed by an electron. There is little

SHence the description “topological”: what matters is a topological invariant of a particle’s history — its winding
number — rather than being dependent on position alone

3.6. ANYONS 29

likelihood that anyons will be found in the laboratory any time soon, and there is even less hope
of building a device capable of controlling and measuring them.

What may save anyon computation, however, are the techniques of quantum simulation in which
one quantum system simulates another. Such techniques are not especially useful for other quantum
devices: the simulator introduces error, much as the system it simulates would have done. With
care, however, the fault-tolerance of anyons can be exploited to make this quantum bootstrapping
work for simulating them. All that is necessary is that the errors introduced by the quantum system
carrying out the simulation be the kind of errors to which anyons are insensitive. In particular, if a
simulation system represents the position of an anyon by some error-prone property, the intrinsic
insensitivity of anyons to errors in position minimizes the effects of the simulator’s error. The errors
introduced by the computational device are not errors to which the computation is sensitive.

Of the technologies described here, anyons are the furthest from reality at present, nor is it
clear that quantum computation with anyons has much of a future. If quantum simulation of
anyon systems can be made to work, then such systems have the potential to solve several other
major problems of quantum computation in one fell swoop. This possibility alone makes them
worth considering.

30

CHAPTER 3. QUANTUM HARDWARE

Chapter 4

Quantum Theory

4.1 Theoretical Models of Quantum Computation

In the previous chapter, we have characterized what information a quantum system can store. Now,
we take up the related question of what functions a quantum device can compute. Specifically, given
a quantum system with state space S, we ask which unitary transformations

T:5—>S8 (4.1)

can be computed on one of the hardware models considered in the previous chapter by applying
some sequence of primitive operations it supports. Since we would like these results to be, as
far as possible, independent of the particular hardware model, we need first to pin down a good
theoretical model of general-purpose quantum computation.

4.1.1 Quantum Turing Machines

Classically, the Turing machine has served as a reasonable universal model of computation. The
basic description of a quantum Turing machine is due to Deutsch. In his view the classical Turing
machine’s infinite supply of tape squares, initially blank, corresponds to an infinite supply of qubits,
initially in some “blank” state, say |0). A finite control, in general a quantum system, interacts
with those qubits by engaging in carefully specified interactions with a finite number of them at
a time — without loss of generality, one. This finite control can change which qubits it interacts
with, alter their state (possibly while altering some of its own state) in a unitary manner, and make
decisions about what instructions to carry out next.

Because the finite control is constrained to unitary evolution, it is not immediately clear how
to implement such primitives as conditional control-flow. Nor is it immediately obvious how to
represent an arbitrary quantum Turing machine “program” in a format that a quantum Turing
machine itself could read and implement. A classical Turing machine expresses the idea of locality
of individual operations by constraining the head to operate on one square at a time; a quantum
Turing machine’s interactions are similarly constrained. However, the constructions and reductions
involved in implementing what seem like fairly elementary operations involve some more “global”

31

32 CHAPTER 4. QUANTUM THEORY

restrictions on the the transition function of a quantum Turing machine. Informally, the transition
function is a mapping from configurations to configurations; for this mapping to be unitary, it must
respect orthogonality across all possible configurations, something it is clear a great many “possible”
transition functions will fail to do. The hardest problem is preventing multiple configurations
from being mapped to the same configuration while still allowing different control-flow paths to
reconverge, a necessary condition for any looping or reentrant control-flow.

The solution to this problem — and to a number of other problems — can be found in Bernstein
and Vazirani’s proof of the existence of a universal quantum Turing machine. Their proof revolves
around establishing that quantum Turing machines can carry out the complete set of traditional
Turing machine primitives in a manner susceptible to concise description. They give a sequence
of reductions showing how quantum Turing machines can implement non-trivial control-flow, the
execution of other quantum Turing machines as “subroutines,” changes of basis, and even arbitrary
unitary transformations with concise (polynomially-bounded) representations provided as input
1. By developing a framework for quantum Turing machine designers to decompose problems
into smaller subtasks and then compose the actions of machines which solve those subtasks, they
effectively give a reduction from classical Turing machines to quantum Turing machines. The cost
their solution imposes, however, is a substantial increase in the intricacy of the actual transition
function used to implement simple-seeming primitives.

In the other direction, a quantum Turing machine can be represented as a state in a complex
vector space evolving according to a specified unitary operator. Although this space is infinite-
dimensional, only a finite number of these dimensions ever simultaneously have non-zero compo-
nents. Thus, a classical Turing machine can simulate a quantum Turing machine to arbitrarily good
precision, by reducing the problem of simulating a quantum Turing machine to carrying out a series
to complex matrix multiplications, at times expanding the matrix as necessary. As a consequence,
quantum Turing machines are Turing-equivalent devices.?

Although quantum Turing machines are universal by inheritance from the universality of clas-
sical Turing machines, they are also universal for quantum computation in a more direct sense. To
the extent that quantum Turing machines are “programmable,” they are programmable with the
descriptions (in matrix form) of other quantum Turing machines. Further, any quantum system
can be represented by a unitary transformation in matrix form. Such a transformation can be simu-
lated on a quantum Turing machine. This argument makes quantum Turing machines universal for
any quantum devices whose actions can be computably described, which is to say, any reasonable
quantum model of computation.

4.1.2 Quantum Cellular Automata

Quantum cellular automata are cellular automata whose transition functions can be continuous
(with complex coefficients). They correspond reasonably naturally to to quantum-dot-based imple-

!The polynomial bound is crucial only to the efficiency of the implementation. The transformations can easily be
allowed to have exponentially-large descriptions, which suffices to admit arbitrarily good approximations to arbitrary
unitary transformations, at the cost of the polynomial time-bound on the quantum Turing machine executing the
transformation

2Given that quantum Turing machines are, because of the rules of measurement, probabilistic devices, this state-
ment is slightly simplistic. Quantum Turing machines are Turing-equivalent in the same sense that traditional Turing
machines with access to a source of random bits are Turing-equivalent: a traditional Turing machine can describe
the probability distribution of their outputs with arbitrarily good accuracy.

4.1. THEORETICAL MODELS OF QUANTUM COMPUTATION 33

mentations. They are also a massively parallel model, combining the parallelism of a large number
of processors with “quantum parallelism,” making them able to carry out certain operations very
efficiently.

The above list exhausts the strengths of the quantum cellular automaton model. The same issue
that initially appeared to plague quantum Turing machines — determining whether a specified
transition function actually induces a unitary evolution of the system as a whole — is also a
problem for quantum cellular automata. Unfortunately, while Bernstein and Vazirani gave an
affirmative answer to the problem for quantum Turing machines, the corresponding answers for
quantum cellular automata have thus far been mostly negative. For example, in one dimension,
no homogeneous (having the same transition function at each cell) linear cellular automata can
exist. If the homogeneity conditions are weakened, nontrivial quantum cellular automata become
possible, but the issues involved in programming them are not theoretically well-understood.

Perhaps more seriously, there are not yet any interesting uses for quantum cellular automata.
There exist several compelling and innovative algorithms for other general-purpose models, but
quantum cellular automata have done nothing to distinguish themselves in this way. Classically,
massively parallel models enjoy certain advantages over sequential ones; massively parallel quantum
models enjoy those advantages over their sequential analogues, but they have yet to demonstrate
that they possess advantages unique to the combination of “quantum” with “parallel.” Since
quantum cellular automata have demonstrated neither wide applicability nor especially pleasant
theoretical properties, we turn our attention instead to a model which has shown both.

4.1.3 Acyclic Quantum Circuits

The basic idea of a quantum circuit formalism is that we regard a unitary operation which only
(directly) affects n qubits as a gate that takes n inputs to n outputs. The wires in this model
represent the values of qubits between the application of transformations that directly operate on
them and are allowed to freely cross. The transformations are given a total linear order; the output
of a gate may only be connected to the input of a gate which follows it in that order.

Further, each wire must connect exactly one output and exactly one input (including as “out-
puts” the inputs to the overall circuit, and vice-versa). Neither may there be any input or output
not connected to a wire. These latter two constraints are necessary to ensure that the action of
the circuit is unitary. To duplicate a qubit (by splitting a wire to multiple inputs) or destroy it (by
failing to connect it to an input) would be a mapping between vector spaces of different dimension,
which a priori cannot be unitary. Even if a destruction and a duplication are carried out simultane-
ously, it is easy to see that the transformation represented by these actions is not unitary, as it has
neither a right and nor a left inverse. We will consider these constraints again later, in discussing
connections to reversible computation and issues in quantum programming language design.

The formal semantics of an acyclic circuit are straightforward. If the gates of the circuit im-
plement the transformations G, Go,... Gy to the qubits specified as their inputs (extended to
transformations on the full 2"-dimensional space in the usual way), and oy, 09, ..., 0 are the per-
mutation matrices 3 which carry the appropriate qubits to each gate, then the overall action of the

3In an actual implementation, the o; could physically interchange qubits, or could implement transformations
to swap their values, or the G; could act directly on the appropriate qubits “in place.” All three possibilities have
equivalent matrix forms

34 CHAPTER 4. QUANTUM THEORY

circuit is the transformation
O'kaUk_le_l e G20'1G10'0, (42)

Conversely, more complicated unitary transformations can be carried out by factoring them into
simpler ones which become the gates of the circuit.

Quantum circuits are also commonly specified in diagrammatic format. The following diagram
is representative of the notation we will use for circuit diagrams:

0o G 01 Go 02 G3 03

O
N

(4.3)

Horizontal lines represent qubits, to which gates (boxes) and permutations (rearrangements of the
lines) are applied; inputs enter at the left and outputs leave at the right. Here, the first two gates
are controlled-NOT gates, and the final gate is a Hadamard rotation. The circles inside the two
controlled-NOT gates indicate the qubit to which the rotation is applied (the qubit with no circle
over it inside the gate is the control qubit).

4.1.4 Circuits and Turing Machines Compared

We will use the circuit model as our preferred theoretical model of quantum computation. While
the advantages this model over the cellular automaton model are clear, the decision to counsider
quantum circuits instead of quantum Turing machines requires some justification.

The principal objection to such a decision is that circuits are inherently a straight-line model,
in which the sequence of actions to be carried out on a given input does not depend on the input.
A Turing machine, on the other hand, can take actions conditionally, based on the input or on
intermediate values computed during the computation. This allows the Turing machine to handle
inputs of different sizes, and to carry out nontrivial control-flow.

The reply to this objection takes two forms. First, quantum circuits are less powerful than
quantum Turing machines only in the same weak sense that classical circuits are less powerful
than classical Turing machines. Classically, if we allow families of circuits for problems, we can
simulate any Turing machine M by a family of circuits Cy;(s,t), where s is the size of inputs to
be counsidered, and ¢ is the time-bound on the computation of the Turing machine. Thus, for any
computation actually carried out by a Turing machine to produce an answer from some input, there
exists a circuit which computes the same answer from the same input.

A similar result holds for quantum Turing machines and quantum acyclic circuits; Yao has shown
that this simulation can be carried out with only polynomial slowdown for any function computable
in polynomial time on a quantum Turing machine. Any problem (efficiently) computable on a
quantum Turing machine is (efficiently) computable by acyclic quantum circuits. Thus, although

4.1. THEORETICAL MODELS OF QUANTUM COMPUTATION 35

there is no individual “universal quantum circuit,” no loss in intrinsic computational power results
from dropping back to circuits.

The second reply is perhaps more important, given the present state of quantum computation.
Quantum circuits are currently feasible to implement, whereas quantum Turing machines are not.
Of the models discussed in the previous chapter, only quantum dots, even in principle, are capable
of actually implementing a quantum Turing machine. The hurdles, theoretical and practical, to
implementing quantum Turing machines in their full generality, are almost unimaginable.

The quantum Turing machine model requires that the finite-state control must not only con-
tain some quantum state but in fact be a fully quantum system. The “head” in a quantum Turing
machine must be able (by being in a superposition of distinct states) to act on spatially separated
qubits simultaneously, and to carry out different kinds of interactions with them. On the other
hand, the reality of present technology is that quantum systems require macroscopic classical con-
trol systems: large magnetic fields, precision lasers, optical beamsplitters, and the like. Creating
quantum systems capable of controlling other quantum systems in the complicated ways required
by the quantum Turing machine model is a goal that will remain out of reach for quite some time.

The bad news for quantum Turing machines, however, is not such bad news for quantum
computation. The features of quantum Turing machines which make them so difficult to implement
are not actually necessary for most quantum algorithms. The main quantum algorithms of interest
are almost all straight-line algorithms: they use (implicitly) data parallelism, but not instruction
parallelism. It is not necessary for a quantum computer to be able to make control-flow decisions
in order to carry out interesting computations on it.

Although there have been a few algorithms proposed which rely upon such techniques,?, in
general they are neither necessary nor fully intuitive. In some respects, computations using such
models are not entirely well-defined: particular, the question of when a computation that involves
such a superposition of head states, some of which may be final while others are not, can be said
to have “ended” is a very thorny one. It is also generally easier to reason formally about the
finite-dimensional unitary transformation induced by a quantum circuit than it is to reason about
the infinite-dimensional induced by a quantum Turing machine.

From the algorithm-design point of view, it is difficult to make effective use of the doors opened
by allowing control flow based on the values of qubits in superpositions. As a general principle,
some degree of similarity between the actions of different parts of the superposition of states of the
finite control is necessary in order for them to interfere in useful ways. Without this interference,
the quantum case devolves to the classically-implementable probabilistic one. Thus, we shall use
acyclic quantum circuits as our model of general-purpose quantum computation: they have almost
all of the good features of quantum Turing machines, but almost none of the poor ones.

4Kondacs and Watrous, for example, have given an algorithm for the quantum equivalent of a bi-directional finite-
state automaton that allows it to recognize the language a"b" by placing its tape head in a superposition of states
at different places along the input. When restricted to one-way motion (which precludes the possibility of spatial
separation of the pieces of a superposition), quantum finite-state automata are provably weaker than their classical
counterparts. Therefore, in this case, allowing a quantum rather than a classical control system does increase the
power of the model.

36 CHAPTER 4. QUANTUM THEORY

4.2 Quantum Computability Theory

4.2.1 Approximating Transformations

We now turn our attention to the matter of determining which unitary transformations can be
computed by acyclic quantum circuits with given primitive operations. We seek quantum analogues
to the result that any Boolean function can be computed by a circuit composed entirely of NAND
gates, or that AND and OR gates together suffice to compute any monotone function. More
precisely, given some finitely-generable set of gates G, what (possibly) larger class of transformations
T can be implemented by some circuit with gates drawn from G?

A quick counting argument shows that it is impossible for any finitely-generable G to implement
every element of U® exactly. Such a G can give rise to only a countably infinite number of distinct
circuits. On the other hand, the set of unitary transformations, even on a 1-dimensional complex
vector space, has uncountable cardinality.

It is possible, however, to implement every element of U® to arbitrarily good accuracy with
certain very simple gate sets G. That such approximations suffice follows because U° has metric
topological structure. That is, given a reasonable metric on U® (a way of assigning to any two
transformations a non-negative real “distance” between them), the actions of group multiplication
(composing two transformations) and group inverse (taking the inverse of a transformation) are
continuous with respect to that metric (do not map transformations which are close together
to transformations which are far apart). We can specify the worst-case error with which one
transformation approximates another as a metric > on U®; we can then be confident that as long
as the individual error of a sequence of transformations is bounded tightly enough, the error of the
overall transformation they implement will also be bounded as closely as we require. Thus, the error
in the state of the system after applying the overall transformation can also be bounded as closely
as necessary, which effectively bounds the degree to which the probability distribution of actual
outputs can differ from the distribution of outputs resulting from the “correct” transformation.

4.2.2 A Universal Quantum Gate

Given this broader definition of what it means for a gate set G to implement a class of transforma-
tions, it turns out that there exist G which suffice to implement any transformation in U®. Such G
are called universal. David Deutsch found a single three-qubit gate which, by itself, is universal

Consider N, the negation gate. Note that this gate leaves the vector
1 0 1
V2 V2

Given two n-dimensional transformations 7' and V', one good metric regards them as matrices and lets

)+ —=I1) (4.4)

d(T, V) = max{|Tij — V;]|0 S: i,j S n}

We could also equally well let
AT,V)= Y Ty —Vyl,

0<i,j<n

or use a metric more specifically tailored to the manifold structure of U®. In any event, these metrics are equivalent
in that they induce the same topology on U®

4.2. QUANTUM COMPUTABILITY THEORY 37

unchanged % We can thus regard N as a rotation about the axis defined by %|O) + %H) Since

N? = I, N rotates its input by an angle of = radians. We can also consider rotations by other
angles; let Ry be a rotation about this axis by the angle 6. 7

Deutsch’s insight was that to generate the Lie algebra of unitary transformations on a three-
qubit space, it suffices to be able to apply appropriate Rgs in an appropriately controllable way. Let
6 be any angle such that 7 and 6 are incommensurable, that is, such that 7 is irrational. Deutsch’s
universal gate D is the gate of three inputs which applies iRy to its third input if the first two
inputs are both |1). We call this gate a “controlled-controlled-iRy,” to indicate that the first two
qubits control the application of 1Ry to the third.

The first step in Deutsch’s construction is to show that with D, it is possible, to arbitrarily
good accuracy, create a controlled-controlled-R,, gate for any angle «. Start by taking D*, which
can be rewritten as

D" = (iRy)" = i'(Ry)" = Ru, (4.6)

because Ry is a rotation. Because 6 was incommensurable with 7, so is 4. By taking successive
powers of D*, it is possible to approximate arbitrary rotations, because the angles they rotate by
will be densely distributed through [0, 27]. ®

In particular, it is possible to generate an arbitrarily good approximation to N = R;. The
controlled-controlled- IV gate is called a Toffoli gate, and it is fundamental to universal reversible
and quantum computation. As we shall discuss below, the Toffoli gate is universal for reversible
Boolean functions. In particular, with Toffoli gates the eight basis states of the three-qubit system
can be arbitrarily permuted, so that it is possible to bring any pair of basis states into the |0)3 and
|1)3 positions where the iRy can be applied to them. Once there, they can be phase-shifted and
rotated as necessary, then swapped back to their original “places.” The details are slightly tedious,
but not especially complicated.

Given the ability to implement arbitrary unitary transformations on three qubits at a time, it
is not difficult to show how to make arbitrary transformations on n qubits. The easiest method is
to use Toffoli gates to make versions of D which have more than two control bits. This version, for

5This vector is an eigenvalue of of this operator, with eigenvalue 1. Its existence is guaranteed by the spectral
theorem, which in fact shows that every unitary transformation can be regarded as a rotation about some axis.

It is possible to give Ry in matrix form, but the derivation is more illuminating than the result. Ry rotates
about its axis %|O) + %H) by an angle of . However, the subspace of vectors perpendicular to this axis is one
dimensional. The rotation in this subspace takes the form of a phase shift (the only degree of freedom available), so
that Re¢ multiples the phase component of %|0) - %H) (which spans this subspace) by e?’. These two vectors are
the Fourier basis, so that Ry is diagonal in the Fourier basis with matrix

1 0
RQZ(O ew)-

To return to the computational basis, we conjugate Ry by the Hadamard matrix, which converts between computa-
tional and Fourier bases:

e (11 1 0 1 1) [1+4€% 1-¢"
RG—HRGH—<1 _1)(0 87,'6)(1 —1)_<1—ei9 14e®) (4.5)

8This fact follows from the Weyl equidistribution theorem.

38 CHAPTER 4. QUANTUM THEORY

example (using a scratch qubit which starts at |0) and is returned to |0)), has three control bits:

control 0
control 0
control 1 T T
control 1
D scratch O O AT
4 = .
control 2 ()
. control 2 Ds
O q
@)

Slight modifications of the proof give above show that an n-bit Deutsch gate suffices to implement
any unitary transformation on n qubits.

4.2.3 Other Universal Gates

Deutsch’s result can be extended in two interesting directions. One is to follow through on the
promise made in the previous chapter to show that a gate set G which includes a controlled-NOT
gate and all one-qubit gates is universal. The other is something of a mathematical curiosity, but
illuminating about the distinctive nature of quantum computation.

The reduction of a Deutsch gate to a controlled-NOT plus one-qubit rotations proceeds in
several stages. First, the three-qubit gate D3 can be optimized into a two-qubit version Ds. The
key insight is that D3 treats its first two inputs identically, suggesting that there might be a way to
make the construction work with only one controlling bit instead of two. In fact, a controlled- Ry
gate that imposes a phase shift of 7 radians (so that applying the gate eight times causes no net
phase shift) instead of § radians works. D is a controlled Sy gate, where

Sy = €'1 Ry = \/iRqy. (4.8)

The proof that D, is universal is generally analogous to the proof for D3, except that the construc-
tion of a Toffoli gate is more intricate.

To complete the reduction, we show that a controlled-NOT gate and arbitrary single-qubit
rotations suffice to implement a controlled-U gate, where U is any unitary transformation on one
qubit. N can be considered as a self-inverse rotation, so that conjugating some other rotation B
by N will change B into a different rotation B. An arbitrary rotation U can be decomposed ? into
ABC such that

ABC = U but
ANBNC = I. (4.9)
(4.10)

9The proof relies on geometric properties of the group of unitary transformations on C?, considered as a group
of rotations in three (real-valued) spatial dimensions. In essence, B is chosen so that B will be B! A and C then
either cancel with B or act together with B to carry out a full rotation by U.

4.2. QUANTUM COMPUTABILITY THEORY 39

The following circuit implements a controlled-U gate:

N N
A O B O C —

(4.11)

If the first qubit is |0), the controlled-NOT gates act trivially on the second qubit and the overall
rotation ABC = U is applied to the second qubit. If the first qubit is |1), the controlled-NOT gates
flip the state of the second qubit, imposing the overall rotation ANBNC = I. This sequence of
gates, therefore, acts as a controlled-U gate.!? Since Dy is a controlled-Sy gate, a controlled-NOT
gate and one-qubit rotations constitute a universal set of gates. ! This result justifies the choice
of this set of primitive gates as the goal of quantum computing hardware schemes.

The other extension of Deutsch’s construction is to show that the Deutsch gate D is not unique
in being universal: almost all two-qubit gates are universal.'? This fact suggests that the space of
quantum transformations is indeed considerably “larger” than the space of classical ones, and that
any journey into the space of quantum operations takes us decidedly beyond the power of classical
operations. It also suggests that implementing all quantum operations is equivalent in difficulty
to implementing any appropriately chosen operation of sufficient complexity, an argument with
both reductive and constructive overtones. Some interesting mathematical glosses on Grover’s
and Shor’s algorithms start from this observation about the usefulness of “almost any” quantum
transformation.

10Technically, the first qubit must be flipped before and after this circuit, but this is trivial with one-qubit rotations.

1 Even this result can be improved on: two appropriately-chosen rotations suffices. Given rotations A and B which
do not commute, it is possible to generate, to arbitrary accuracy, any single-qubit rotation (by a similar argument to
that used to show that a single Ry suffices to generate, to arbitrary accuracy, any Ry).

12Technically, the set of non-universal two-qubit gates has measure zero in the set of all two-qubit gates. The proof,
due to Deutsch, Barenco, and Ekert, proceeds along somewhat analogous lines to those in the proof for the Deutsch
gate. They consider a “generic” two-qubit gate: one which has four eigenvalues which are incommensurate with 7 and
with each other. They then show that its powers are dense in a torus of higher dimension than the one-dimensional
[0, 27] considered for Deutsch’s gate. Then, by switching the inputs before and after applying the gate, they generate
a second set of points dense in that torus. At this point, new “gates” can be generated as linear combinations of the
old ones or through taking their commutator; the proof then involves checking that these operations yield enough
linearly independent gates to generate (up to arbitrarily small approximation) the full sixteen-dimensional space of
possible transformations.

40

CHAPTER 4. QUANTUM THEORY

Chapter 5

Quantum Circuits

5.1 Overview

The decomposition of Dy into controlled-NOT gates and single-qubit rotations, among its other
features, is interesting because it breaks a quantum computation down into two sets of primitives:
one that is superficially quasi-classical and one that is purely quantum. This kind of decomposition
is a general feature of quantum algorithms: the computation can be divided into quasi-classical and
quantum phases. The quasi-classical phases are often quite extensive, involving long sequences of
operations that compute quite non-trivial functions. The quantum phases, on the other hand, are
almost exclusively changes of basis. One very general pattern is that a quantum phase sets up a
superposition of computational basis states, a quasi-classical phase operates (implicitly) in parallel
on each of the states in this superposition, and a final quantum phase recombines the different
elements of the superposition into a single answer.

In these algorithms, the changes of basis are usually algorithmically straightforward. The
analysis of how they act on different states can be mathematically sophisticated, but the underlying
sequence of gates is usually very simple. On the other hand, the intervening quasi-classical phase
can involve the computation of functions with decidedly non-trivial circuits, even classically. In
creating actual gate arrays to carry out such algorithms, it is crucial to know not just that these
quasi-classical stages can be implemented with quantum gates, but that they can be implemented

efficiently.

To be more precise, the quasi-classical transformations are those transformations which map
elements of the computational basis only to elements of the computational basis. Such transfor-
mations define permutations of the computational basis. When applied to a superposition of basis
states, they do not combine or divide elements of the superposition or cause them to interfere: the
number of elements in the superposition and their relative phases and amplitude are unchanged by
such a stage. The set of all such transformations on n qubits is isomorphic to the set of logically-
reversible Boolean functions on n bits. Rewversible computing, the study of such functions and
their implementation, is older than quantum computation and has generated a number of results
applicable to quantum computation.

Specifically, results from reversible computing provide affirmative answers to the following ques-
tions raised by quantum computation:

41

42 CHAPTER 5. QUANTUM CIRCUITS

1. Can any Boolean function, reversible or not, be computed by a circuit built from reversible
gates? If so, then any Boolean function classically computable will also be computable entirely
within the quasi-classical fragment of quantum circuits. Up to some very mild restrictions
on what it means for a reversible circuit to “compute” an irreversible function, the answer to
this question is “yes.” Further, the overhead (in time and space) of such simulations is, even
in the worst case, not unseasonable.

2. Are there (reversible) classical gates which are universal for the reversible Boolean functions?
If so, then such gates could be used as building-blocks for quasi-classical quantum circuits in
the same way that NAND gates are used as building-blocks for classical Boolean circuits. As
mentioned above, the Toffoli gate is indeed universal for reversible functions.

3. Where an efficient algorithm for a reversible function exists — even if that algorithm requires
irreversible steps — does there exist a fully reversible algorithm of comparable efficiency? If so,
then such algorithms can be carried over to quantum architectures with little loss of efficiency.
We shall see several explicit reversible constructions for familiar arithmetic functions which
preserve the asymptotic running time of the irreversible algorithms they are based on.

We will now examine each of these questions in more detail.

5.2 General Reversible Simulations

A quick brute-force argument shows that any Boolean function — reversible or not — can be
reversible evaluated with no time overhead. The construction is simple: keep copies of all arguments
to the subfunctions (and to their subfunctions, recursively down to the gate level) as they are
evaluated. Each n-bit gate we thus become a 2n-bit gate. Such gates leave their first n inputs
unchanged. The second n inputs are assumed to start off |0) and are then used to hold the
“original” outputs of the function computed by the old, n-bit gate.

|z) |/ ()

oy | 1)

(5.1)

Given the pair (z, f(z)), the application of f to z can be “uncomputed” by resetting the second
n bits to |0).! The space complexity of this algorithm, however, is O(n) for an n-step computa-
tion, which is unacceptably high for general-purpose simulation. Fortunately, an algorithm due to
Bennett, shows by example that, with more substantial cleverness, it is possible to do much better.

!To be picky, this is an insufficient specification, as it is only the correct behavior when the second n bits hold
f(z), where x is the value held in the first n bits. Technically, the “reversed” action of this gate needs to be specified
for the cases when the second m bits hold some other value. The following argument, although slightly inelegant,
takes care of those cases The gate will have some action (in the forward direction) on inputs when the second n bits
hold values other than |0), even though the gate would not normally (by convention) be executed on such input. The
gate thus determines a mapping from its possible inputs to some output values; this mapping will be bijective because
the gate (being inductively built from reversible gates) is reversible. The inverse image of this mapping supplies the
proper behavior of the gate run backwards, even if it is never used in such a way.

5.2. GENERAL REVERSIBLE SIMULATIONS 43

To simplify the analysis, suppose that an irreversible computer alters no more than a constant
amount of its storage in each elementary step (one “unit”), and that an algorithm operates as a
series of steps each of which takes one input to one output (any classical straight-line computation
can be put in this form by appropriate currying). This assumption is reasonable for circuits, because
within a given circuit, there is some constant upper bound £ on the fan-in of gates in the circuit.
One unit of storage is then k bits, since no gate can consume more values than it sees as inputs.

The key insight behind the algorithm is that running reversible gates in reverse releases the
storage being used to hold their outputs. By backing up a portion of the computation, it is possible
to reclaim unneeded storage space. Consider the following scheme for computing a two-stage
function g o f, where g and f are each functions from one unit of input to one unit of output.

Action Stored Values
(Initially) x

Compute f(z) z f(z)
Gompute g(/(z)) v f@) 7 @)
Run the gate for f in reverse x 9(f(z))

At this point, only the values of x and g(f(z)) are being stored, which is the amount of storage
we would require if we could compute g(f(z)) directly. Thus, the space needed to hold f(z) is only
required during the actual computation of g(f(z)) form z.

Note that the ability to uncompute g(f(z)) has now been lost, since the value of f(z) is no
longer cached. If the algorithm were to go on to compute h(g(f(z))), it could not reclaim the
space storing ¢g(f(z)) in the same way that it reclaimed the space storing f(z). With the values z,
g(f(z)), and h(g(f(x))) on hand, it appears to be stuck caching g(f(z)).

However, by paying the one-register space overhead involved in recomputing f(z), the algorithm
can, at any point it decides ¢g(f(z)) is no longer useful, perform the following steps:

Action Stored Values

(Initially) z 9(f(z))
Compute f(z) flz) g(f(z))

x
Run the gate for g in reverse x f(x)
Run the gate for f in reverse x

This procedure is the exact reversal of the procedure used to calculate go f and exactly undoes
that computation (with the same amount of temporary overhead). To emphasize this point, we
might call this second procedure one for (g o f)~!. The key is that this technique provides a way
of packaging up procedures that compute and uncompute larger portions of a computation than
individual gates.

The general case then, involves applying the “two steps forward, one step back” philosophy
recursively. The computation is split into two equal-length halves. The final value of the first half
is computed (using this recursive decomposition if it has length of more than a single step). From
this final value of the first half, the final value of the second half can then be computed (again, using
the recursive breakdown if necessary). Finally, the the “halfway” value is reclaimed by running

44 CHAPTER 5. QUANTUM CIRCUITS

backwards the procedure used to compute it.

10) l9(f(2)))
10) 1F@) ? [f@) 10)
o |7 A

(5.2)

Now, let us analyze the behavior of this algorithm by considering T'(N), the time that a reversible
simulation of an irreversible N-step computation takes, and S(IV), the space overhead involved.
The time taken is the time to run two computations of length N/2 in the forward direction, and one
in the reverse direction. Since computations take the same amount of time forwards as backwards,
we have

T(N)=3T(N/2), (5.3)
a recurrence which solves explicitly (given a base case of T'(1) = 1) to
T(N) = 3le: N, (5.4)

On the other hand, the space taken by this recursive stage is at its greatest while we are hanging
on to the intermediate value and also computing a computation of length N/2, so that

S(N)=1+S8(N/2), (5.5)
which solves explicitly to

S(N) = logyn. (5.6)

This is not the only tradeoff possible between time and space. To achieve a slowdown that is
better than a change of exponent requires exponential amounts of space; to achieve better-than-
logarithmic space consumption is impossible. Within these bounds, we can improve the base of
the exponent in our expression for T'(N) to any value arbitrarily close to 2 while still keeping
S(N) € O(logyn) (just with increasingly large constants as the base approaches 2). To do so, we
modify the above algorithm to compute n steps and then uncompute the first n — 1, making the
algorithm run faster at the cost of more temporary storage space. In general, though, the above
algorithm, unmodified, suffices for most purposes. Applied to a function computable in polynomial
time, the construction provides a polynomial-time reversible algorithm for the same function, using
only polylogarithmic extra space. From the point of view of complexity theory, this is generally
good enough.

5.3 Universal Reversible Gates

Just as the two-bit gate NAND is universal for classical irreversible computation, there exist multi-
ple three-bit gates which are universal for reversible computation (if given access to O(1) “scratch”
bits, initially fixed at zero or one, and which we are allowed to modify at will). One such gate is

5.3. UNIVERSAL REVERSIBLE GATES 45

the Toffoli gate, a controlled-controlled-NO'T, which inverts its third input if its first two inputs
are both |1).

The proof of universality proceeds in several stages. First, several other useful gates can be
built from 3-bit Toffoli gates. An unconditional NOT gate is easy, given two bits known to be |1):

1)
1) .
E O
(5.7)

It is also a straightforward matter to construct n-bit Toffoli gates, for arbitrary n (such gates flip
their nth input if the other n — 1 gates are all |1)). The following circuit creates a four-bit Toffoli
gate from three-bit Toffoli gates, using one bit of temporary space (assumed to be zero initially,
and returned to zero at the end of the circuit):

control 0 -
control 1 T T
scratch o o
control 2 T
! O
(5.8)

This construction clearly generalizes to allow us to construct an n + 1-bit Toffoli gate from two
3-bit Toffoli gates and one n-bit Toffoli gate.

By applying NOT gates to the inputs and outputs of an n-bit Toffoli gate, it is possible to flip
a single bit from an n-bit vector if and only if the other n — 1 bits have a specific value. If we
consider the computational basis as a set of 2" elements,

10...00)
0...01)
0...10)
10...11) (5.9)
... 11)

such an operation interchanges any two elements which differ only in a single bit, while leaving all

46 CHAPTER 5. QUANTUM CIRCUITS

other elements unchanged. For example

N N

(5.10)

interchanges |0101) and |0001). From here, the next goal is to show that any two elements of the
computational basis can be transposed, no matter how many elements they differ in. Regarding the
elements of the basis as the vertices of an n-dimensional hypercube, those elements connected by an
edge are precisely those which differ in exactly one bit. The standard routing algorithm provides a
path from any element to any other along the edges of the hypercube. A sequence of transpositions
along these edges and back will exchange the two endpoints. For example, the following sequence
interchanges |0010) and |1100) while leaving unchanged all other elements of the basis fixed:

0010) « [1010)
11010) « [1110)
|1110) < |1100) (5.11)
1110) « |1010)
11010) « |0010)

Because arbitrary permutations can be written as a product of transpositions and this last construc-
tion can generate any transposition using Toffoli gates, Toffoli gates can generate any permutation
of the computational basis. Since the reversible functions on n bits are the permutations of the 2"
possible bit vectors, Toffoli gates are universal for reversible computation.

Although no two-bit gate is universal for reversible computation, the Toffoli gate is not the only
three-bit gate that is universal. The Fredkin gate, which swaps the values of its second and third
inputs if its first input is |1), is also universal (if given access to two supplies of bits initially known
to be |0) and |1), respectively).

5.4 Reimplementing Familiar Functions

The construction of an arbitrary reversible function from Toffoli gates alone is a profligate one: as
stated, it requires O(n2™) Toffoli gates. However, this construction builds circuits for some func-
tions which have no polynomially-sized circuits, reversible or irreversible. For functions which are
polynomially computable irreversibly, the Bennett simulation algorithm builds polynomially-sized
reversible circuits, but increases both the running time and the space required by any algorithm.
For many functions already known to be reversible, however, it is possible to do considerably better
than this upper bound.

Where conventional algorithms for these problems involve a mixture of reversible and irreversible
steps, the reversible algorithms for the same problems implement the reversible steps directly,

5.4. REIMPLEMENTING FAMILIAR FUNCTIONS 47

thereby avoiding paying the overhead involved in preserving around inputs to reversible steps.
Only for those steps which are intrinsically irreversible are inputs retained. A number of other
tricks, depending on the specific structure of the problem, are also employed.

5.4.1 Addition

Cousider the standard sequential algorithmn for adding two n-bit numbers a,, 1 ...a1a¢9 and b, 1 ...b1bg
to make another n-bit number s,,_1 ... s15¢ (along with an overflow bit). A series of 1-bit additions
are chained together with carries. Given «a;, b;, and ¢;, the carried bit from the previous addition,

it is easy to s; and c;41 using only a few gates. The algorithm starts with cg = and ¢,, becomes the
overflow bit. Left over are the the carry bits, which we erase when we need them next.

The only problem involved in making this algorithm reversible is finding a way to reclaim the
space taken by the carry bits when we no longer need them. But this is trivial; the logic that
computed ¢; can be run backwards. Thus ¢, is erased first, then ¢, 1, working backwards to ¢;.
The time overhead is O(n), which is a substantial improvement on the general construction. The
space overhead is O(n) during the computation, but 0 after it.

Several improvements are possible to this algorithm. At the cost of overwriting one of the inputs
during the course of the computation, the space overhead can be slashed even further. Rather than
taking |a)|b)|0) to |a)|b)|a + b), a more space-efficient algorithm takes |a)|b) to |a)|a + b).

This technique is a very common one in the construction of reversible and quantum algorithms.
In computing f(z), where f is a reversible phase of some larger computation, it is common to
overwrite x with f(x), since it is easy to recover z from f(z) if it is needed again. This technique
even works when the algorithm for f contains irreversible steps; such steps can be replaced with
reversible simulations, as in the adding circuit above. It also works when f takes multiple inputs
and the value of one of them is reconstructible from the computed value of f and the rest of the
inputs. In this case, the currying of f to function of one argument yields a reversible function, and
we are justified in calling f reversible. The 4+ = operator in many programming languages is an
example of such an f curried to become reversible.

5.4.2 Modular Addition and Beyond

Another algorithm illustrative of the techniques involved in designing efficient quantum analogues
of classical algorithms is one for modular addition: given a and b, calculate a + b (mod N) for
some fixed NV > 2. Cousidered as a curried function, modular addition is reversible. The problem
is that the traditional algorithm — add a and b, and then subtract N if the result is too large —
involves a reversible stage followed by an irreversible one. The challenge is to write a circuit that
subtracts N if necessary while keeping enough information around to determine whether N needs
to be added back in, if run backwards.

Vedral et al. solved this problem with a variant of the following algorithm, which assumes the
availability of a binary encoding of N in a register which we will call r, and also a spare register,
z, set to 0:

1. Given a and b, replace a with a + b (just an in-place addition).

48 CHAPTER 5. QUANTUM CIRCUITS

2. Compare N with a + b, storing the result in a temporary bit ¢ (letting ¢ be 1 if N is greater
than a + b, and 0 otherwise).

3. If ¢ = 1, then swap the contents of r with the contents of z. r now holds IV if and only if
a+b>N.

4. Subtract the contents of r from a + b, by running the addition circuit backwards.

5. Repeat step 3, swapping r and z if ¢ = 1. This undoes the effects of step 3, so that r now
holds N and z holds 0, as they have been swapped either twice or not at all.

6. Compare b with a + b and invert ¢ iff b > a + b. This last step restores ¢ to be 0.

The register that formerly held a now holds a + b if we had ¢ + b < N, and holds a + b — N if
a+b> N. Since we have returned all the auxiliary registers to their initial values, this algorithm
works as advertised in computing a + b (mod N). Subtractions can be implemented by running
addition circuits backwards. Comparisons can be carried out by subtracting one value from another
and checking the most significant bit for underflow. The following circuit diagram illustrates the
above algorithm:

z =0k ok
c=0 swap swap 0
n=N > : : j CN
+-1 |
a > result
+
b blll
(5.12)

The trickery in this algorithm is that the subtraction cannot be a conditional operation: the al-
gorithm cannot choose whether or not to subtract, as this would lead to an irreversible choice of
computation path based on the result of a comparison. Instead, it makes the subtraction uncon-
ditional, but make the swap the conditional operation; the swap can easily be implemented with
Toffoli gates, since it is effectively data-independent. 2

More complicated operations are also within our inventory. Multiplication, in binary, is a series
of controlled additions; for each digit in a, either add a bit-shifted version of b to the running total
or add 0. Exponentiation is similarly a series of controlled multiplications. Both of these operations
can be performed modulo N with analogous modifications to those used for addition modulo N.
There are many possible optimizations, especially for space. The use of “carry-save” techniques to
parallelize O(n) n-bit additions, the use of the Fast Fourier Transform to speed up multiplications,
and the use of multiplexing techniques to improve the efficiency of modular exponentiation are all
possible.

2This statement is slightly unfair to subtraction and other “complicated” operations. By using 4-bit Toffoli gates
with an extra “control” line, it is always possible to make any reversible program into a controlled program, which
acts trivially if the extra control line is 0. This procedure does not scale so well to nested conditional statements,
however, since it requires using Toffoli gates with more and more control lines. In general, it is usually more efficient
to perform minor surgery on the algorithms we use so that they are amenable to straight-line execution.

Chapter 6

Quantum Programming

6.1 Problems of Quantum Programming

Given the kinds of computations quantum circuits can carry out, the next important challenge is
determining how best to ezpress the circuit for a given computation. This is the task programming
languages have traditionally carried out, by providing a human-intelligible form for specifying
computational actions. The benefits of high-level programming languages are well-established; the
question is whether quantum architectures can also enjoy these benefits. As we shall see, the answer
is largely yes.

6.1.1 Programming for Circuits

Classically, programming for circuits (instead of for a general-purpose von Neumann machine)
is reasonably well-understood. Hardware designers are accustomed to using high-level description
languages for encoding their designs.! Typically, these languages go far beyond merely enumerating
the interconnections between individual gates in a complicated design. Languages like VHDL
include support for abstracting away from the details of implementing individual components of
a circuit in the same way that traditional languages include support for abstracting away from
the details of implementing functions. The circuit-like aspect of quantum circuit models does not
present any fundamentally new challenges.

6.1.2 Programming Unitary Transformations

Instead, it is the quantum aspects of quantum circuits that are more challenging. There are
quantum computations on even a small number of qubits which have no classical counterparts. Such
operations, like the Hadamard rotation and the conditional phase shift, are the basic building-blocks
of most interesting quantum computations. Such actions generally involve

!Modern hardware-deign languages actually attack considerably harder problems than the ones at issue in speci-
fying quantum circuits, because classical circuits can be, and frequently are, cyclic.

49

50 CHAPTER 6. QUANTUM PROGRAMMING

e manipulations of state (like phase rotations) that are classically undetectable,

e manipulations of superposition (like the Hadamard rotation) that are classically incoherent,?
or

e the correlated manipulation of multiple qubits (like the Fredkin gate) in a way that does
not lend itself to the multiple-input/one-input paradigm of many formal models of classical
computation.

A good quantum programming language should make using fundamentally quantum operations
convenient and encourage the programmer to use those operations the architecture supports.

These problems have also been largely solved. That a conditional phase rotation alters an
individual qubit’s state in an “undetectable” way is only a problem if one insists that all variables
must be transparent and all their properties and fields must be visible at all times. Object-oriented
programming rejects such demands, establishing a notion of opaque objects whose contents can
only be inspected or altered through certain interface functions. An object-oriented approach to
quantum programming treats qubits as objects: their contents can only be accessed by applying
unitary transformations to them or by measuring them. A conditional phase shift, for example,
alters the internal state of a qubit; there is no a priori reason why such an action should necessarily
change the value of a subsequent measurement (which is just another action acting on a qubit).
This approach matches our circuit metaphor very well; the “gates” which are placed across one or
more “lines” become functions which operate on qubits, where the qubits are thought of as fixed
in place

That certain quantum operations are classically bizarre in their effects is an issue that no pro-
gramming language can entirely avoid. By being precise about what we really want from a quantum
programming language, however, it is possible to make some progress. Where the “programming”
approach breaks down is in the semantics of a quantum program. Due to effects of superposition
and correlation between different qubits, the status of a program cannot be represented merely by
the status of all the variables in the program. Further, each operation acts as a unitary transfor-
mation on the vector space of the entire computation, not just on the space of the qubits it directly
names. On the other hand, the individual operations of the language cannot (and indeed must not)
inspect the global status of the computation, in particular, information about different terms in a
superposition.

That said, the real power of quantum computation springs from these non-local effects: by
carrying out a series of straightforward and localized transformations, it is possible to implement
a more interesting unitary transformation on the system as a whole. Programming languages are
among the tools useful for specifying these local transformations in a clear and concise way. A good
semantic description of a quantum programming language will allow us to reason precisely about the
effects of a program. However, the programming language itself succeeds if it allows us to produce
useful programs without having to explicitly write down the high-dimensional transformations they
implement, in the same way that classical programming languages do not require us to explicitly
list their effects on every possible input.

2The Hadamard rotation is classically absurd because can cause a computation in one state to split into a super-
position of two distinct states which can nonetheless still affect each other.

6.2. PREVENTING NON-UNITARY TRANSFORMATIONS ol

Thus, to return to the issue of representing primitive transformations, such transformations can
ultimately be given in the form of the matrix specifying their effects on the qubits they directly
name. Every programming language has a level of primitive operations whose implementation
is no longer expressed in the language. System calls, syntactic primitives like +, declarations of
externally-defined functions, and assembly-language segments are all typical primitives for tradi-
tional languages.

For a quantum language, the primitives are those basic unitary operations permitted by the par-
ticular quantum implementation at hand. The sequence of NMR pulses implementing a controlled-
NOT or a Hadamard rotation are effectively atomic units of computation from an programmer’s
point of view, just as the qubit is the atomic unit of storage.?

The internals of these primitives would be implementation-specific. On an NMR-based com-
puter, such primitive would be translated into sequences of pulses. On an anyon-based computer,
they would be translated into sequences of conjugations. For those doing formal semantics of such
languages, the primitive operations would be encoded directly as matrices. For quantum simula-
tors, operation each could also be associated with a range of possible errors. The point is that
these primitives are the point at which the “machine-independence” of a quantum programming
language stops. It is even possible to imagine implementations in which these programming primi-
tives would automatically generate error-correction operations along with the higher-level functions
they implement.

The final problem named above, that quantum functions, by affecting multiple qubits, require
multiple return values, is the least serious. Numerous classical programming paradigms have been
devised to enable multiple return values. Functions in languages with lists (or ad hoc lists built
with pointers) can return a list of return values which is then destructured by the calling function:
in languages with strong typing and pattern-matching, this process is particularly straightforward.
Functions in languages with side-effects can “return” multiple values by modifying variables (or
locations) passed to them. Declarative languages avoid the problem altogether, since a 2n-place
relation easily expresses the proper connection between n input qubits and n output qubits. We
shall see examples in all of these styles below.

6.2 Preventing Non-Unitary Transformations

So far, we have considered computations possible on quantum computers that are impossible on
classical architectures. However, there are irreversible classical computations on even a small num-
ber of bits which have no direct quantum counterparts. Such operations, like assignment, are often
the basic building-blocks of many interesting classical computations. Although it is always possible
to “compile” irreversible operations into a reversible form, the core of a quantum programming

3Tt is not currently necessary to pin down precisely which primitives they should include; these are details for the
designers of particular languages for particular implementations (or for languages portable across several implemen-
tations). Our concern here is with establishing that the tools exist for such designers to design languages when the
need arises, that there are no more fundamental problems that stand in the way. A reasonable set of primitives for
a hardware-independent quantum language would probably include a controlled-NOT gate, a family of conditional
rotations, and a family of conditional phase shifts, each of which would be defined differently, depending on the spe-
cific quantum computer being targeted. Other gates, like Toffoli gates or unconditional Hadamard rotations, could
be implemented as syntactic sugar atop this primitive layer.

52 CHAPTER 6. QUANTUM PROGRAMMING

language should respect the limits of the architecture it runs on and discourage the programmer
from even thinking in non-unitary terms. Ideally, these constraints should be syntactic: non-unitary
operations should not correspond to valid programs.

6.2.1 Reversibility as Typing

Let us focus more closely on what causes a program to specify non-unitary actions. It fails to be
reversible when it destructively overwrites a value. More generally, any step that consumes one
or more values without producing other values sufficient to reconstruct the original ones cannot
be undone. Provided these computed values are themselves conserved in a similar fashion, the
original ones will be, also. A more subtle point is that it is impossible to produce independent
copies of qubits. It is possible to produce copies, true, but these copies are entangled with the
originals. Viewed as a constraint on operations, this fact is merely the time-reversed view of the
previous constraint: a set of inputs cannot produce outputs with greater information content than
the inputs. It is impossible both to throw away the values of qubits and to produce them ez nihilo.
In both directions, if each step of a program is unitary, the program as a whole will be.

What this analysis suggests is that the requirement that quantum state evolve in a unitary
manner can be rephrased as a condition on the permissible operations on qubits. The require-
ments of reversibility are a type-based constraint on the way in which qubits can be combined and
manipulated. This way of phrasing the second constraint points the way. It reflects the classical
approach usually taken in dealing with typing. The ML philosophy that “Well-typed programs
cannot go wrong,” suggests a similar dictum that “Locally-unitary programs cannot go wrong,” for
the quantum domain.

The approach taken in functional languages of considering variables as names rather than as
storage locations turns out to be the most fruitful way of formalizing the right constraints. In a
quantum context, variables become meaningful when they are associated with the contents of a
qubit, i.e. when they are bound to the return values or to formal parameters of functions. Variables
become meaningless again once the qubits to which they refer have been altered or possibly been
entangled with other qubits, i.e. when they have been used as inputs to functions or been returned
from a function. In the circuit metaphor, each piece of “wire” running from one gate to another
is given a distinct name. Several functional languages — Linear LISP and Concurrent Clean —
feature such constraints, although only Concurrent Clean’s implements them as typing rules, using
so-called uniqueness types.

6.2.2 Uniqueness Types

The Concurrent Clean approach is to allow, as a type modifier, a uniqueness attribute, denoted by
prepending an asterisk to the type to be marked as unique. Stricter rules apply to variables flagged
as having unique type than to ordinary variables. They may not be used as rvalues more than
once within the scope in which they are defined, unless their uses are provably mutually exclusive
(on two separate arms of an “if-then-else” statement, for example). Further, when their values
are passed into another context, whether through let-binding or as arguments to a function, the
variables which are bound to hold their values must also be declared unique, so that a unique value
does not become non-unique through renaming.

6.2. PREVENTING NON-UNITARY TRANSFORMATIONS 53

Uniqueness types were originally introduced into Concurrent Clean, a lazily evaluated typed
functional programming language, as a way of incorporating stateful objects into a purely functional
context without assignment. The classic example is interfacing to a file; after calling

write(file,’a’)

file no longer has the same value that it did before the write call. The traditional approach in
functional implementations is to separate store locations from the values held in them, and to
modify those values with destructive updates, at the cost of losing referential transparency. The
idea behind uniqueness typing is that after the write, file no longer exists: what we have now is a
different object, which requires a different name. The following code fragment expresses this idea:

let fileA = write(Flile,’a’)
in ...

Here, file and fileA — and the first parameter and the return value of write — must be flagged as
unique. The compiler can statically enforce this requirement as part of a unification-based type
check stage. Although some care must be taken in getting exactly right the correct propagation
of uniqueness values when components of higher-order types are marked as unique, consistent and
coherent algorithms for checking uniqueness are generally straightforward. Concurrent Clean, using
uniqueness types in place of assignment, has been used to implement several systems, including
most of a small operating system.

The constraints of unitary time-evolution can be enforced by making qubits unique types and
subjecting them to the additional restriction that they must be used ezactly once in the scope in
which they are defined, rather than at most once. * At this point, the correct behavior falls out
more or less automatically. Consider the following functional pseudocode for the modular addition
algorithmn from the previous chapter:

function in_place_modular_add(qreg a, qreg b) =
let n = prepare_reg(classical_n),

z = prepare_reg(0),

¢ = prepare_bit(0) in

let (minuend, b’) = in_place_add(a,b) in

let (n’, minuend’, ¢’) = compare_gt(n, minuend, c) in
let (¢, subtrahend, spare) = controlled_swap(c’, n, z) in
let (remainder, subtrahend’) = undo in_place_add(minuend’,subtrahend) in
let (¢”7, release_reg(classical_n), release_reg(0)) = controlled_sawp(c”, subtrahend’, spare) in
let (result, b”, release_bit(0)) = compare_gt(remainder, b’, ¢”’) in
(result, b”);

4This distinction reveals the fact, which we have heretofore swept beneath the rug, that uniqueness types, as
they are used in Concurrent Clean, are really built on a framework of affine logic, in which resources cannot be
duplicated, but can be discarded. Linear LISP incorporates true linear semantics, requiring exactly one use per
definition. For purposes of discussion, though, Concurrent Clean is more useful because it allows both linear and
unrestricted variables and formulates the distinction in terms of type.

o4 CHAPTER 6. QUANTUM PROGRAMMING

z =0k spare 0k

— /! 11 i
c=0 c swap c swap c 0
n=N S n' suptrahepd subtrahend’ : : : : N

41
a minuenfl njinuend’ rgmainder S result
N]
b b b
(6.1)

The direct correspondence between this “program” and the circuit it denotes illustrates a number
of desirable features of quantum languages. First, as promised, the one-to-one correspondence
of names with “wires,” combined with the constraints of uniqueness, automatically ensures the
conservation of qubits. Second, pattern-matching suffices to bind the multiple values returned from
a gate. The operations “prepare” and “release” handle the flow of values associated with temporary
storage returned to its original state at the end of the modular addition function; we discuss their
semantics below. Finally, note that it is a relatively simple matter to give the above language a
formal semantics that specifies the action of each program on the Hilbert space of the system, since
the language “compiles” so cleanly into circuit form, and the semantics of acyclic circuits are quite
straightforward.

6.2.3 Linear Logic

Uniqueness types can be placed on a firm theoretical footing through the use of linear logic to give
semantics to typing systems that employ uniqueness constraints. In linear logic, explicit accounting
is made of the resources used in generating proofs; it is called “linear” because each resource must
be used exactly once in the course of a proof. The contrast between a linear proof system and an
ordinary proof system is most apparent in a sequent calculus setting.

Introduced by Gentzen, sequent calculi employ judgments of the form I' - A to mean that A is
provable using the resources contained in I'. When used for typing, A usually has the form z : «,
meaning that = has type «a, and T takes the form of a sequence of such statements, i.e.,

F=wr:yt , w2y .on Up - (6.2)

In traditional typing systems, T' is a set of assumptions about the types of subexpressions, so the
following additional rules of inference are generally used:

LABAFC, ATEFB AFA_
TTI.B, AN ¢ ATFDB U™

(6.3)
A ATFB I'FB

mcontract mweaken

The exchange rule (exch) allows assumptions to be used in any order in proving a goal. The
substitution rule (subst) means that the assumptions used to prove a subgoal A, plus the additional
assumptions used to prove the main goal B from A, are together sufficient to prove B. The

6.2. PREVENTING NON-UNITARY TRANSFORMATIONS

55

contraction rule (contract) allows an assumption to be used multiple times in proving a goal. The
weakening rule (weaken) allows the introduction of extra assumptions that are not used in the proof.

In a linear proof system, the contraction and weakening rules are omitted, so that assumptions
must be discharged ezactly once in the proof of a goal. Without contraction, a given assumption

can only be used in one place; without weakening, it must be used in at least one place.

For example, consider the following fragment of a simple typing system for quantum expressions.

Here « and 3 are type variables, and the primitive type Q represents a qubit.

H10):Q

EVER®)

Fcrot: QxQ—=QxQ

rz:abF z:«

l'Fu:a AFv:p
CLAF (u,v) tax

l'Fu:a—> 0 AFv:a
IN'AFuv:p

Fz:aFu: AFy:«a
I'N'AF letz=yinu:p

In this system, a program u will be well-typed with type « iff
Fu:a.

Then the expression

let z =|0) in

let y=|1) in
cnot(z, y)

will be well-typed with type Q x Q, according to the following proof tree:

z,QFz:Q y:QFy:Q
z:Quu:QF (z,y) : QxQ cnot: QxQ—>QxQ
z:Q,y: QFcnot(z,y): Q x Q
y:Q,z:QF cnot(z,y): Q x Q F1):Q

z:QFlety=11)in---: QxQ F10): ¢

Fletz=10)in---: QxQ
On the other hand, the program fragment

let = =11) in
cnot(z, x)

56 CHAPTER 6. QUANTUM PROGRAMMING

will be ill-typed: the proof tree can get as far as

z,QFz:Q x:QFz:Q
z:Quzr:QF (z,2) :QxQ cnot:QxQ—QxQ
x:Q,x:QF cnot(z,z): Q xQ F10) : Q
z:QkFletz=10)in---: QxQ

(6.7)

but the final expression has the undischarged hypothesis « : Q. Without contraction, this proof
fails. Since this program, because it attempts to make two distinct copies of x, is impossible to
implement, the typing system rejects it. The following expression (in a context which names d as
a qubit) is also ill-typed:

let z=din
let £ =0) in
let y=|1)in
cnot(z, y)

This time, the tree gets as far as

z,QFz:Q y:QFy:Q
z:Quu:QF (z,y) : QxQ cnot: QxQ—>QxQ
z:Q,y: QFcnot(z,y) : Q x Q
y:Q,z:QF cnot(z,y): Q x Q F1):Q
z:QFlety=11)in---:QxQ F10):q
Fletz=10)in---: QxQ

(6.8)

before it blocks because the let rule needs to discharge the assumption z : Q. There is no way
to introduce that assumption into this proof tree without the weakening rule, as z is named in
no subexpression of the let where it is bound. Since this expression attempts to discard the qubit
represented by d, the typing system catches the leak and rejects it as ill-typed.

Linear logic has all the properties necessary to make it a solid foundation upon which to build a
typing system. Its explicitly linear hypothesis-tracking can be embedded in proof systems without
undue strain. Various theoretical results establish the consistency, completeness, and soundness of
various systems of linear logic. It has also shown applicability to areas of computer science ranging
from complexity theory to natural language semantics.

6.2.4 Preparation, Measurement, and Reversal

Another advantage of seeing the restrictions placed on qubits as type constraints is that such a
view provides reasonably natural ways to describe the preparation and measurement of qubits.
Preparing an initially-blank qubit is a function of no arguments which returns a qubit:

prepare : unit — Q (6.9)

Note that the functionality of prepare functionality is essentially that of a heap allocator: we draw on
an implicit pool of fresh qubits. As such, prepare is implicitly present in Deutsch’s quantum Turing

6.3. OTHER PROGRAMMING PARADIGMS o7

machine model, with its infinite supply of blank qubits. prepare can also be seen (if wrapped with
appropriate transformations) as a way of taking a classical value and embedding it in a quantum
storage location.

The corresponding primitive for measurement takes a qubit as input and returns 0 or 1 to a
classical variable:

measure : Q — {0,1} (6.10)

The measurement operation “destroys” the quantum properties of the qubit in the process of
entangling the qubit with a classical, implicitly macroscopic, system®. Its functionality, looking at
the set of quantum values in a program, mimics that of an operation returning memory to the heap.
Note that this operation is the only way to “promote” a quantum value into a classical one, since
direct coercions are ruled out by the constraint that unique values cannot be stored in non-unique
variables. This typing system preserves the distinction between |0) and 0.

As a consequence, it is impossible to use quantum values, which could be in a superposition of
states, in boolean or integral contexts. This restriction immediately rules out making control-flow
decisions based on quantum values without measuring those values (and thereby destroying any
superposition they may be in). As control flow is always determined by purely classical values, so
that the finite-state control which implicitly implements the program need never be in a superposi-
tion itself. Therefore, purely quantum programs written using formalisms implementing type-based
counstraints are automatically equivalent in computational power to acyclic quantum circuits. Clas-
sical programs with quantum subroutines retain their full power, but the quantum subroutines
provably do not introduce or require quantum-mechanical behavior in the classical fragment. We
shall return to this idea below.

Ensuring that the syntax and semantics of a quantum language guarantee logical reversibil-
ity has an advantage beyond merely preventing non-unitary operations. Any subroutine defined
in such a language can be run in reverse; since many efficient quantum algorithms require the
backwards computation of certain steps (as does the general simulation algorithm for irreversible
computations), it would be convenient for the language to allow the execution in reverse of arbitrary
quantum subroutines. This is easily accomplished: whatever construct a language would normally
have for executing (purely quantum) code in a forwards direction can be supplemented by a parallel
counstruct one for executing such code backwards.

6.3 Other Programming Paradigms

We have focused on embedding quantum operations in a functional context; there are also reason-
able ways of understanding quantum operations in programming paradigms usually classified as
imperative or object-oriented.

5 Aharonov et al. have shown that any computation with intermediate measurements can always be converted into
an equivalent computation with a single measurement at the end, even if the measured qubits are later used in the
computation. Thus, whether “measurement” operations destroy qubits or not is an issue of expressive convenience,
rather than affecting the strength of our programming model.

o8 CHAPTER 6. QUANTUM PROGRAMMING

6.3.1 Object-Oriented Programming

Qubits support only a very limited range of operations when taken one at a time, and most “in-
teresting” quantum operations involve multiple qubits. In a multiple-qubit transformation, the
qubits are equal simultaneous participants; there is in general no way to assign to a transforma-
tion a primary qubit upon which it acts, or to decompose a transformation into a sequence of
single-qubit actions. For this reason, a pure object-oriented system based on method invocation or
message-passing does not work particularly well if qubits are treated as first-class objects.

However, as we have seen, the “object” metaphor itself is applicable. In this metaphor, the data
objects in a program are equated with concrete physical objects which may have internal properties
that are not directly observable, are difficult to move, can be difficult to duplicate, and can only be
interacted with through interfaces on their “surface.” For qubits, the requirements of storage and
of quantum-mechanical constraints give this metaphor teeth: we can only interact with qubits in
certain restricted ways. ¢ By applying these primitives — generally quantum gates — to qubits,
we can change their internal state in ways that are not directly observable. For example, here is
the addition example from above, rewritten in a more object-oriented style:

procedure in_place_modular_add(qreg a, qreg b)
{

greg n(classical n), z(0);

qubit ¢(0);

in_place_add(a,b);
compare_gt(n, a, ¢);
controlled_swap(c,n,z);
undo in_place_add(n,a);
controlled_swap(c,n,z);
compare_gt(a,b,c);

In this style, names refer to qubits instead of to wires. Such a convention makes explicit that the
same storage locations hold both the outputs and the inputs of a gate. We are focusing now on
gates which do not compute values, but instead apply changes to a set of qubits: we have switched
from functions to procedures. *

6.3.2 Imperative Programming

This change is also one of the key changes in going from a functional language to an imperative
one: the transition in emphasis from the values functions compute to the side effects of functions.
Here is the same example, rewritten in imperative style:

SFor example, object-oriented languages are frequently hostile to direct copying of complex objects: by default,
only references to them may be duplicated. This constraint is quite appropriate for qubits.

"If we consider being “classical” as an abstract class from which all classical objects inherit, then object-oriented
notions of inheritance and subclassing neatly enforce the typing constraints forbidding promotion of quantum to
classical objects. The semantics for Concurrent Clean develop a notion of subtyping between unique types and their
non-unique counterparts.

6.3. OTHER PROGRAMMING PARADIGMS 59

procedure in_place_modular_add(qreg a, qreg b)

{
qreg n = prepare_reg(classical n);
greg z = prepare_reg(0);
qubit ¢ = prepare_bit(0);

in_place_add(a,b);
compare_gt(n, a, ¢);
controlled_swap(c,n,z);
undo in_place_add(n,a);
controlled_swap(c,n,z);
compare_gt(a,b,c);

Viewed in this way, qubits become, ironically, anti-functional datatypes: they can only be operated
on procedurally, as opposed to classical datatypes which support functional access. In this respect,
qubits are second-class objects.

This suggests another interesting way to think of quantum architectures in the computational
models we have been using: to a classical computer we attach a “quantum coprocessor” which can
store qubits and implement on them operations it is instructed to perform by the main processor.
The main CPU and the coprocessor communicate along classical channels, and all control decisions
are made by the main CPU. On the other hand, the coprocessor is the only piece which can actually
“look inside” the qubits in the system or manipulate their state coherently. In this respect, the
key difference between a quantum device and a floating-point coprocessor is that the latter (with
current technology) lives on the motherboard, whereas the former requires large and specialized
laboratory apparatus.

Shor’s quantum algorithm for factoring involves carrying out a quantum computation which
depends intimately on the number n to be factored. The metaphor Shor uses is that we “construct”
a quantum circuit given n. Although Shor is careful to establish that this construction is efficiently
computable, given n, the implication is that the construction of the circuit is an offline activity,
while its execution is an online one. On a software level, we see a similar idea if we think of writing
a program that involves some classical parameters to a program with a quantum aspect. The
“construction” of the quantum circuit amounts to partially evaluating the program with respect
to the classical parameters. In the case of Shor’s algorithm, this partial evaluation results in a
purely quantum program embedded within a small classical control loop that repeatedly executes
the quantum program until it succeeds.

6.3.3 Declarative Programming

Declarative programming is already capable of expressing reversible functions in a natural manner:
if a function is specified in terms of reversible functions, it is guaranteed to be reversible. The
advantage of a declarative style for quantum programming is that there is no need for an additional
language construct for reverse execution: calling predicates with only the “output” values instan-
tiated automatically reverses the circuit the predicate represents. Here is the same example from
above, rewritten this time in declarative style:

60 CHAPTER 6. QUANTUM PROGRAMMING

modular_add(a, b, result) : —
add(a,b,raw_sum),
compare_gt(prepare(classical_n),raw_sum, c),
conditional_swap(c, prepare(classical_n), prepare(0), subtrahend,spare),
add(result,subtrahend,raw_sum),
conditional_swap(c, subtrahend, spare, prepare(classical n), prepare(0)),
compare_gt(result,b,c).

Some of the typical advantages of declarative programming do not carry over to the quantum
domain. For example, the ability to specify functions logically and rely upon backtracking to find
a solution does not fit well with the straight-line requirements of quantum circuits. Additionally,
the limits of name-equivalence can be somewhat surprising. In the example above, b is both an
input to and an output of the circuit, a fact the declarative-style version exploits by using only one
name/parameter to represent that value. However, this technique cannot be used indiscriminately,
or two distinct qubits may be unified to the same uninstantiated name, a violation of the no-cloning
restriction. It is more useful to treat the declarative style as a style for expressing quantum circuits,
rather than expecting all the useful features of declarative programming in the classical domain to
carry over to the quantum setting.

Chapter 7

Quantum Algorithms

7.1 Quantum Oracles

Before we can launch into our discussion of quantum algorithms, we should first take care of one last
important definition, that of a quantum oracle. A classical oracle, in its simplest circuit-accessible
form, is a black box with n inputs and m outputs which computes some function

£:{0,13" — {0,1}™. (7.1)

We are usually concerned with the number of queries to the oracle and the amount of additional
processing time required to extract some piece of information about f.

To take a traditional example, f might be a function which treats its input as a truth assignment
to m variables and returns 1 if and only if that assignment satisfies a boolean formula hard-coded
in f. One of the major questions of interest in computational learning theory has been determining
for which classes of boolean formulae some algorithm can reconstruct the hidden formula hidden
inside the black-box, while using only a polynomial number of queries.

A quantum oracle differs from a classical oracle in two ways. First, in order that the oracle can
be reversible, it will be an n + m-input (and thus n + m-output) gate. By convention, the first n
bits will be input, and the last m will be output. The oracle acts as

[2)|y) = =)y © f(x)). (7.2)
The oracle will be self-inverse, because two successive bit flips cancel.

Second, the quantum oracle, as its name implies, accepts quantum queries. For classical queries
— inputs which are elements of the computational basis — it will of course respond just as the
classical oracle would have. For quantum queries — inputs which are superpositions of more than
one element of the computational basis — the oracle will act linearly on that superposition, following
the usual rule (equation (2.5)). We can thus consider the oracle as a gate implementing a (possibly
unknown) unitary transformation Oy.

The internal operations of the oracle do not concern us, except so far as there are certain
requirements these operations must satisfy. The oracle, although it may have mutable state, must

61

62 CHAPTER 7. QUANTUM ALGORITHMS

not expose that state to the outside world. The oracle may not accidentally retain state or have
internals that are observable, even in principle. By the standards we have been applying to quantum
devices, this means that the oracle itself must also be a fully quantum device. It will not suffice to
connect a quantum computer up to a classical oracle; the oracle must be as precisely and carefully
controlled as the computer that queries it. It will be useful to keep this fact in mind during the
following discussions of algorithms, as a check on the classes of problems that may or may not be
effectively solvable.

7.2 Deutsch’s Problem

We begin our discussion of quantum algorithms by considering Deutsch’s problem. Although it is
something of a toy problem, it illustrates, the features that our later, more complicated, algorithimns
will exploit.

In this problem, we are given a function f : {0,1} — {0,1}, and we are asked to determine
whether f(0) = f(1). Classically, two queries are both necessary and sufficient. This problem,
however, can be solved with only one quantum query. We will first give a two-query algorithm, and
then show how those two queries can be combined into one.

7.2.1 The Two-Query Algorithm

The following is a two-query algorithm for Deutsch’s problem, using two qubits, one for input to
the oracle and the other for output:

1. Starting from |0)|0), apply a Hadamard rotation to the first (input) qubit.

2. Pass the two qubits to the oracle.

3. Apply the conditional phase shift operator S; to the second (output) qubit.

4. Invert step (2) by running the oracle on the the two qubits again.

5. Invert step (1) by applying another Hadamard rotation to the first qubit.

This algorithm terminates with |0) in the first register if f is constant, and |1) if f is balanced.
The following circuit illustrates its actions:

|0)

H H ——
Oy Oy
Sr

|0)

(7.3)

To see why this algorithm works, it is easiest to work inside-out. Let F' be the the transformation
implemented by steps (2) through (4):

210) 25 |2)| (@) 25 (1) @) f(@)) 25 (~1)/@ |z)]0). (7.4)

7.2. DEUTSCH’S PROBLEM 63

Provided the second qubit starts in state |0) (which it does in the above algorithm), F' acts only
on the first qubit.

Oy Oy = (7.5)
— S, -

Further, F' is diagonal in the computational basis: it imposes a phase shift based on the value of
f(z) but otherwise leaves untouched both |0) and |1). In matrix form,

—1)/(0) 0 1 0
he < (3 (-7) = (=07 < 0 (—1)/©@+)) (7.6)

The leading constant is irrelevant: it applies equally to |0) and |1) and therefore constitutes a global
phase shift. If f is balanced, then f(0) + f(1) = 1, and F simplifies to S;. If f is constant, then
F = 1. F therefore either leaves its input untouchede or imposes a relative phase shift of 7 on the
|1) component of its input.

— F — Sx F I

f is balanced f is constant
(7.7)

If FF = I, then the two Hadamard rotations cancel each other, making the entire algorithm act
trivially on its input. If ' = S, the Hadamard rotations convert this conditional phase shift into
a bit flip, so the entire algorithm inverts its input. Symbolically,

HIH|0) =H?|0)=10), f is constant

HS, H|0)= N|0) =|1), [is balanced. (7:8)

HFH|0) = {

7.2.2 The One-Query Algorithm

F' is the heart of the above algorithm, but that algorithm requires two oracle queries in order to
translate the oracle’s bit-flip into a phase shift. By using a Hadamard rotation to convert the
bit-flip into a phase shift, however, the following algorithm requires only one query to the oracle:

1. Starting from |0)|1), apply a Hadamard rotation to the first (input) qubit.

2. Apply a Hadamard rotation to the second (output) qubit.

3. Pass the two qubits to the oracle.

4. Tnvert step (2) by applying another Hadamard rotation to the second qubit. again.

5. Invert step (1) by applying another Hadamard rotation to the first qubit.

64 CHAPTER 7. QUANTUM ALGORITHMS

This algorithm has the following circuit representation:

00— H H
Oy

B— H H

(7.9)

Steps (2) through (4) are another implementation of F', using only one oracle query.

Another form of the bit-flip/phase-shift equivalence expressed in equation (2.26) is that NH =
HS,;. Therefore

NH|1) = HS,|1) = —HJ1). (7.10)

Consider, as in (7.4) the actions of the transformation HO;H acting on input |z)|1):

1) L o) (H1D) 25 (-1 @) (H[1) L (~1)7 @)). (7.11)

Provided that the second qubit starts in the state |1) (which it does in the single-query algorithm),
this transformation is therefore a faithful implementation of F'.

7.2.3 Features of the Algorithm

There are a few essential features of this algorithm it is worthwhile to tease out. First, from
an information-theoretic point of view, solving Deutsch’s problem requires extracting one bit of
information about f: whether it is constant or balanced. The problem with classical queries is
that the information they provide is useful for answering questions about the individual values
of f(0) and f(1), not just whether than whether f(0) = f(1). On the other hand, the query in
the single-query quantum algorithm provides no information as to the actual value of f(0), only
whether it is the same as f(1). The quantum algorithm can issue a query that corresponds more
precisely to the question being asked.

Speaking informally, we might say that the query issued by this algorithm assigns equal ampli-
tudes to the terms |0) and |1). Since each query represents one bit of information, the algorithm
obtains half a bit of information about the value of f(0) and half a bit of information about f(1).
This information is stored in the first qubit in the phases of |0) and |1), so that each term in
the superposition holds half a bit of information. The Hadamard transformation then causes the
information about whether f(0) = f(1) to interfere constructively, and the information about the
specific values of f(0) and f(1) to interfere destructively.

Every other quantum algorithm we will encounter will use a variant on this technique. The
specific pattern of interference is usually the most interesting part of a quantum algorithm. Usually,
the complicated part of designing a quantum algorithm is finding a transformation which causes
constructive interference for exactly the right term of a superposition.

Deutsch’s algorithm is also our first example of an amplification algorithm. The two possible
answers — “f is constant” and “f is balanced” — are encoded as |0) and |1), respectively. The
state %|0) + %H) is a uniform approximation to both |0) and |1). The oracle query amplifies that

7.3. THE BERNSTEIN-VAZIRANI PROBLEM 65

term in the superposition which is an approximation to the correct answer. In Deutsch’s algorithin,
one oracle query suffices to increase the amplitude of the preferred term to 1; in Grover’s algorithm,
multiple queries are required.

Another way to express the advantage enjoyed by the quantum algorithms is to say that they
exploit “quantum parallelism.” By creating the superposition %|0) + %H), a quantum algorithm
uses superposition to calculate every value of f “in parallel.” The final Hadamard rotation then
“adds” together phase components without explicit calculation, so that interference effects can be
used to carry out computation.

7.3 The Bernstein-Vazirani Problem
Bernstein and Vazirani, following up on an idea of Deutsch and Josza, generalized the Deutsch
problem to functions of more than one qubit.
A parity function f, on n inputs is specified by giving an n-bit vector a. For any input z,
falz) =12 q, (7.12)

the mod-2 dot product of « and a. In the Bernstein-Vazirani problem, the mystery function f one
of the 2™ parity functions on n inputs. The task of the algorithm is to determine a. Observe that
the Deutsch problem is. more or less, the one-bit case of this problem: f is constant for « = 0 and
balanced for a = 1.! In the following discussion, we will use z @ y to indicate the bitwise addition
(modulo 2) of two vectors.

7.3.1 The Bernstein-Vazirani Algorithm

Classically, this problem can be solved with n queries. Examine determine each bit of a, one-by-one,
by examining

£(100...0),
f(OlO:. ..0), _—
F(000... 1)

A quantum algorithm can produce an exact solution to this problem, however, with only one
quantum query. The algorithm is the n-bit extension of the single-query algorithm for Deutsch’s
problem.

First, we require an n-bit version of the Hadamard rotation, for the first and last stages of the
modified algorithm. Applying the single-bit Hadamard rotation to each qubit of an n-bit register

'For true symmetry with the Deutsch problem, we would need to allow negations of parity functions. The one-bit
version of the Bernstein-Vazirani problem would require f(0) = 0, and can thus be solved classically in one query (on
the value of f(1).

66 CHAPTER 7. QUANTUM ALGORITHMS

gives a transformation with the right properties. Denote this n-bit transformation H(™. Then

HM|z) = Hlzg)H|z1)... H|z,_1)

n—1
= [Hlx)
i=0
n—1 1 o
= FHOE(IOH(—D 1)

1 v .
- ,/2nH D (F1)T Ly,
=1y c{0,1)
1
= LS (). (7.14)
V2" Jetoyn

Using this definition, we can now give an algorithm to solve the Bernstein-Vazirani problem.

1. Starting from |0")|1), apply the n-bit Hadamard rotation H™ to the first register.
2. Apply a Hadamard rotation to the second qubit.
Pass the register and the second qubit to the oracle.

Apply a Hadamard rotation to the second qubit.

ook w

Apply the n-bit Hadamard rotation to the first register.

This algorithm will terminate in the state |a)|1), so that a can be determined with certainty by
examining the first register.

Steps (2) through (4) implement an n-bit version of F, which we call F("). Provided the second
qubit begins in state |1) (which it does in this algorithm), F(") acts on the first register as

1) 2 (< 1)), (7.15)

F(™) multiplies by —1 the phase of any term in the superposition for which f(z) = 1.
7.3.2 Proof of Correctness

The algorithm begins by applying H™ to a register containing |0"). Since z -y = 0 for all y, the
state of the register becomes

m 1
0 = = > |a). (7.16)
2 z€{0,1}7

F() then imposes a relative phase shift on some of the components of the superposition in the first
register:

\/12—71 Y Y (1)), (7.17)

ze€{0,1}" ze€{0,1}"

g

7.3. THE BERNSTEIN-VAZIRANI PROBLEM 67

Finally, a second n-bit Hadamard rotation converts this phase shift information back into bit-flip
form:

1 H®) 1
> (—1)"z) — (=1)* > (=D)*"y)
\/2_71 ze{0,1}n a:e 0,1}n \/_ ye{0,1}n
]‘ xr-ar+ax-
= g 2. (DT)

ze{0,1}n yeq{0,1}m
1
o e D (—prle)y (7.18)

2
ye{0,1} ze{0,1}"

The coefficient of |y) in this sum can be rewritten in terms of a. Consider first the case y = a.
Since

a®a=00...0, (7.19)

the phase component of every term inside the sum over z in (7.18) is 1 and x vanishes from inside
the summation:

2% > (—1)$'(“@y>:2in > o1=1 (7.20)

z€{0,1}" z€{0,1}"

Thus, the component of |a) in the summation over y in (7.18) is 1. Measuring the first register
yields |a) with probability 1.

We could stop the analysis at this point, since we automatically know that the amplitude of |y)
in |¢) must be 0 for any y # a. If it were some nonzero value k, then the probability of observing
ly) would be |k|?, and the total probability would fail to sum to 1. It is instructive, however, to
carry out the computation for these other y, to see precisely why their coefficients vanish.

Suppose that y # a. Then y and a must differ in at least one bit. Without loss of generality,
suppose that it is the leftmost bit, so that yy # ag. Then the leftmost bit of a®y will be 1. Consider
the values of z - (a @ y) for two values of x (let us call them %y and z7) which differ only in the first
digit:

(Zo-(a®y))+(10...0- (a®y))
= Zo-(a®y) +1. (7.21)

Of any such pair of z, therefore, one will raise —1 to an even power, and the other to an odd power.

68 CHAPTER 7. QUANTUM ALGORITHMS

The coeflicient of |y) from equation (7.18) can therefore be written as

]' Z-la 1 xcla
o Z (—1)%(a®y) = o Z (—1)%clad)

ze{0,1}" z;€{0,1}

- 2% Z Z (—1)%(aty)

wiyéoe{oa]-} IOE{Ovl}

1
= 5 X (W)
xi;éoe{ozl}
1
= o >0 (7.22)
inyéoe{o,l}
= 0. (7.23)

7.3.3 Commentary

Any difference between y and a means that the contributions to the amplitude of |y) from the
various |z) can be arranged into pairs which cancel.

Another way of looking at this problem, inspired by Fourier analysis, is to note that the parity
functions f, : {0,1}" — {0,1} are the Fourier basis functions f, : {0,1}" — {1,—1}, by different
names® The Fourier basis {Xa}ae{ojl}n is closely associated with the Fourier basis function in
several ways, including that f,|a) = |xa). Simon’s algorithm exploits the mutual orthogonality of
the functions fa.

The algorithm starts by preparing the state |xo). The oracle query implements a group action
on the Fourier basis which takes |x¢) to |x,). The final Hadamard rotation is a Fourier transform
on {0,1}", which sends |x) to |y) with coefficient given by f,(|x)). If |x) is the state corresponding
to the parity/Fourier function f,, then f,(|x)) =1 but fy(x)) = 0 for any other y.

7.4 Simon’s Problem

The above examples do actually not represent a major gain for quantum algorithms. Although the
quantum algorithms are better, they are faster at solving problems that were nonetheless classically
easy. Bernstein and Vazirani, modifying the above problem into a recursive construction, produced
the first problem solvable in polynomial time in a quantum model, but not in a classical one. Simon
developed the following simpler problem, which still gives the quantum algorithm an exponential
speedup.

We say that a function f is invariant under XOR-mask if there is some n-bit value a such that

fa) = f(z@a) (7.24)

3The difference between f, and fa is the difference between Z/2 and the multiplicative group of square roots of
unity over the complex numbers: two ways of describing the same group structure, one additive and one multiplicative.

7.4. SIMON’S PROBLEM 69

for all z. With respect to the additive group structure on Z¥', such functions are periodic with
period a. In Simon’s problem, the unknown function is some

£:{0,1}" — {0,1}" (7.25)

which is invariant under some XOR-mask a. Further, if f(z) = f(y) then x =y or z @ a = y. The
problem is to determine the XOR-mask a. 4

Classically, any algorithm for this problem, even a probabilistic one, requires time exponential
in n. Two distinct queries x and y such that f(z) = f(y) suffice to determine a, but any set of
queries which fails to provide such a pair provides no information about a. The optimal strategy
for any algorithm is to maximize the number of distinct values of z @ y in the set of queries it
issues. But k£ queries can generate at most k£ such pairs, so that the worst-case number of queries
required to deterministically try all 2" possible a is (2"~!). Probabilistically, the expected time
is Q(2"?), which is still exponential.

7.4.1 Simon’s Algorithm

On the other hand, an expected O(n) iterations of the following algorithm solve Simon’s problem:

1. Prepare two registers in the state |[0")]0™).

2. Apply H™ to the first register to obtain the even superposition of all basis states.
3. Call the oracle on the two registers.

4. Measure the second register.

5. Apply H™ to the first register.

6. Measure the first register.

Let Y be the set

{y:y-a=0} (7.26)

This algorithm terminates with |y) in the first register, where y is randomly drawn from Y. Note
that 0" € Y, that Y is closed under @, and that |Y| = 2"~!. Thus Y forms a subspace of {0, 1}"
and has dimension n — 1. From any n — 1 linearly independent elements of ¥ we will be able to
determine both Y and a.

Let us examine the actions of the algorithm more closely to see why it works. Steps (1) through
(3) prepare the state

1
)1 (2). (7.27)

*We will neglect the degenerate case a = 0 in our analysis. Handling this case requires only a constant number of
additional queries; ruling it out removes a corner case from the analysis of the algorithm.

70 CHAPTER 7. QUANTUM ALGORITHMS

Since f has period a, measuring the second register yields
1
— (|zg) + 20D a T 7.28
75 (lz0) + L0 @ a)) | (x0) (7.28)

for some z¢ randomly chosen from X. At this point, H(™ will extract some information about a.
Since the second qubit no longer affects the state of the first qubit, we drop it from the analysis.

1 n
f| w0) + sl ®a) A E T 2 (D7) +ﬁ 3 (1))

ye{o 1} y€{0 1}
= = > (DT (L (1)) Jy) (7.29)
\/_ \/2_ ye{0,1}n

If a -y = 1, then the coefficient of |y) vanishes. If a -y = 0, the two terms inside the summation
add constructively and |y) has coefficient

(7.30)

7.4.2 Features of the Algorithm

The real magic in this algorithm takes place during the second Hadamard rotation. Before this
rotation, the first register contains a superposition of two elements, each of which contains no useful
information by itself. The information in this state is in the correlation between these elements —
they are separated by exactly a. The Hadamard rotation exposes this correlation because it is the
Fourier transform for the additive group of n-bit vectors.

Put another way, f is a periodic function, and we wish to determine its period. After sampling
f at a great many points in parallel, we apply the Fourier transform to convert the sampled points
into a set of Fourier coefficients. Of these coefficients, fa will be large and the rest will vanish.
Both the sampling process and the computation of the Fourier transform are efficient for a quantum
system, because superposition allows sampling at an exponential number of points and interference
allows for rapid computation of the Fourier coefficients.

On another note, although we measured the second register in step (4), the algorithm functions
identically if this step is dropped. The second register does not participate in the algorithm after
this step, but it is in a superposition of many basis states. These terms of the superposition cannot
interfere with each other, as the contents of the second register remain distinct between them.
Permanently isolating a piece of a system from the rest of the system is, from the perspective of
the system, equivalent to measuring that piece of the system.

7.5 Shor’s Algorithm

Simon’s algorithm, given a function with period a, determines a. So does Shor’s algorithm. The
difference between the two is the structure of the underlying group. Simon’s algorithm treats

7.5. SHOR’S ALGORITHM 71

{0,1}™ as the group (Z/2)", with a group law of exclusive-OR. Shor’s algorithm treats {0,1}" as
the group Z/2", with a group law of binary addition, an attitude we can emphasize by writing
{0,1}"™ as {0,1,...,2" — 1}.

A function f is periodic with period r iff f(z) = f(y) whenever y = z +r, and f is not periodic
with period smaller than r°. Shor’s algorithm determines the value of r for periodic functions that
are efficiently computable.

7.5.1 The Quantum Fourier Transform

The Hadamard rotation H™ carries out a Fourier transform on {0,1}". For {0,1,...,2" —1}, the
appropriate analogue is a quantum version of a traditional discrete Fourier transform, generally
referred to as (the) Quantum Fourier Transform (QFT), which acts as

2n—1

QFT 1 B
lz) = = Nid D i/t (7.31)
y=0

where z € {0,1,...,2" —1} (so that |z) belongs to the computational basis). The amplitude of the
ly) term in the final state is independent of z and y, but the phase of this term depends on both z
and y. We introduce the notation

D(t) = ™, (7.32)
so that QFT|z) can be rewritten as
= -
@ (5:55) ly)- .
eICOL (7.3

We will also use the identity ®(z)®(y) = ®(z + y).

The classical discrete Fourier transform can be efficiently computed; so can the quantum dis-
crete Fourier transform. The easiest way to think about the circuit that implements it is as
a binary multiplication circuit which computes bitwise products incrementally, starting from the
most-significant-bit and working towards the least-significant bit. Classically, an incremental calcu-
lation repeatedly left-shifts previous partial products; the QFT algorithm uses successively smaller
phase rotations for less significant bits.

nitialize the register The circuit itself is made up from two kinds of gates. First, there are one-
bit Hadamard gates. For consistency with Shor’s notation, we call Ry the Hadamard gate which
acts on qubit k. Second, there are also conditional rotation gates S;;, which multiply the phase
by ®(2*~7) iff both of their inputs (the jth and kth qubit of a register) are |1). Note that all the
Sjr commute with each other, as phase multiplications commute.

The algorithm to compute the QFT works as follows:

This condition can also be restated in the equivalent form f(z) = f(y) iff y = x + kr for some integer k such that
z,y€{0,1,2,...,2" —1}.

72 CHAPTER 7. QUANTUM ALGORITHMS

1. Load into the register the state to which the QFT will be applied, according to the convention
that if the register is in the state

[zo)|z1) - - [#n—1), (7.34)
then g is the most significant digit of and z,_; is the least significant digit.
2. For each k from 1 to n, carry out the following steps

e Apply the gates S, for all j < k.
e Apply the gate Ry.

The register will now be in a superposition of a number of terms, each of the form

lyodly1) - - - |yn—1)- (7.35)

These terms are the bit-reversals of the answer: in each, yg is the least significant digit of y and
Yn—1 18 the most significant digit.

To be precise about this bit-reversal. we use X and Y} as shorthand for the binary numbers
encoded by the k leftmost qubits in any term in a superposition. Formally

k—1
X, = 2k_1x0 4+ 42z _oxp 1 = Z 2k_1_i.’lii (736)

i=0

k=1

Vi = 2y a4 420y =) 2 (7.37)

i=0

Xk4+1 and Yi4 1 can be expressed incrementally as

Xpi1 =2X + 2 Yy = 28y, + V5. (7.38)
We now examine in detail the action of the transform on |z) for an arbitrary z € {0,1,...,2" —

1}. Each stage of the algorithm extends the transform to include one more qubit, so that after
k stages the quantum Fourier transform has been calculated for the leftmost k qubits and the
results stored in those qubits in bit-reversed form. Formally, we assume that the first k£ stages have
produced the state

= X (5 e o) - lon) (7.39)

Y0.-yp—1€{0,1}*

(For k = 0, this state is |zo)|z1) ... |zn—1)) At the end of the k + 1th stage, the system has the state

1 KXp+1Yk1
/ok+1 O\ ——5—) lwo) - lw)lzks1) - - Tna (7.40)
92k+1 Z < 9k
Yo...yp€{0,1}E+1

For n = k, this final state is (7.33).

To see that the gates S followed by Ry, correctly implement one stage of the quantum Fourier
transform, consider first the effect of the S;; gates on the state (7.39). The kth qubit has state

7.5. SHOR’S ALGORITHM 73

|zx). In each term of the sum, for each j < k, the jth qubit from the left is |y;). qubit from
the left is |y;). If both are 1 (that is, if y;jz = 1), then the phase of that term is multiplied by
®(27F = ®(27/2%). Taken across all possible values of 5, the phase is multiplied by

k—1

k—1
o Zp 4 1
P § Wk | =@ 2—k§ 27y, =¢'<2—kkak>, (7.41)

taking the overall state from (7.39) to

ok) lyo) - - - [yk—1)|2k) - - - |T0)- (7.42)

1
/2k Z
Yo.-yr—1€{0,1}*
Next, the gate Ry takes each term in this superposition to two terms, one each for |y;) = |0)
and |yk) = |1). In each of these terms, the amplitude is multiplied by %; the phase of a term is

multiplied by —1 if and only if both |z) and |y) are |1). Put another way, the phase is multiplied
by ®(zkyr). Thus, the gate Ry takes (7.42) to the state

1 Z o <2XkYk + x1 Yy + 262y,

Vok+T ok) [yo) - - [y Tk41) - - - [20—1). (7.43)

Y0...yr €{0,1}F+1

This state can be recognized as (7.33) with the phase factored. More precisely

o <Xk+1Yk+1> _ % ((2Xk + 1) (25 yp + Yk))
2k B 2k

_ 3 2X,Yr + 23 Y + 28 zpyk o 2K Xy,
N 2k 2k

(7.44)

_ % <2XkYk + x1 Yy + 2k$kyk>
2k ’

because the right-hand term must always be a multiple of 2, and therefore causes a rotation that
is a multiple of 27, which vanishes.

7.5.2 The Period-Finding Algorithm

Structurally, Shor’s algorithm follows Simon’s algorithm very closely.

1. Prepare two registers in the state |0")]0™).

2. Appply H™ to the first register to obtain the even superposition of all basis states.
3. Call the oracle on the two registers.

4. Measure the second register.

5. Apply the quantum Fourier transform to the first register.

6. Measure the first register.

74 CHAPTER 7. QUANTUM ALGORITHMS

Ounly step (5) differs from the corresponding step in Simon’s algorithm. A different kind of Fourier
transform extracts different information about the periodicity of f.

Shor’s algorithm, as does Simon’s, begins by preparing the state

\/2_71 Z |z). (7.45)

The algorithm then applies the oracle for f. producing the state

=
oLl ;::0 |z)|f (2))- (7.46)

Shor’s algorithm now measures the second register (as in Simon’s algorithm, this step is not strictly
necessary, but makes the analysis simpler to follow), and observes some value; particular f(zg).
The state of the first register after this measurement is slightly more complicated: it contains the
equal superposition of all x such that f(z) = f(z¢). Let us call the number of such values A.
Without loss of generality, the number we name g is the smallest such value, so that the others are
given by xo + 7, z9 + 2r,..., 20 + (A — 1)r. The state of the overall system after this measurement
is therefore

1 A-1
— |zo + jr). (7.47)
\/ij_% 0oT)J

At this point, a quantum Fourier transform is used to extract information about this state.

1 Al 11 A (@o+ir)y
FT | — +j = = 0)
Q \/ngﬂﬂ _]’f') \/Z — < |y>

par ; on—1
_ \/2171_142"2_:1 <1>()Alcb(m/) ly) (7.48)

y=0 J=0

Finally, the first register is observed. The probability of seeing |y) is given by the square of the
absolute value of the amplitude of |y), that is
2 2

A-1 . 2 A—-1 .
1 (azoy> oY _ 1 _‘(b(xoy)‘?_ o2
Vo A on—1 B /om A on—1 ‘ gn—1

J=0

Al 71(1) Jry 4
= Nax?(z (7:49)

This value will be large when the terms inside the sum interfere constructively. Constructive
interference will occur when each addition of another 2mi%; does not much affect the phase, i.e.

7.6. GROVER’S ALGORITHM 75

when yr is close to a multiple of 2". A good approximation to y allows a reasonable-probability
possibility of reconstructing r (by taking greatest common denominators).

Shor’s algorithm can fail because r is almost certain not to divide 2", so that even the correct
solution is not perfectly measured by the QFT, and also because values close to r will also display
constructive interference in the final distribution. Nonetheless, it can be shown that with arbi-
trarily high probability, O(loglogr) repetitions suffice to find r. The probability of success on any
individual trial actually is at least ¢(r)/3r.

7.5.3 Factoring As Period-Finding

One standard periodic function is exponentiation modulo a fixed value: given some fixed a and
n that are relatively prime to each other, f(z) = a® (mod n)%. The goal of an algorithm is to

determine the order of ¢ modulo n, the smallest nonzero z for which a* = 1(modn).

Order-finding is useful because there is a randomized reduction from factorization to order-
finding. Given an efficient way of computing the order of arbitrary elements z(mod n), it is possible
to factor n efficiently with high probability of success.

Choose a random 1 < z < n and compute its order . Thus
z" —1 = 0(modn), (7.50)

can be factored as

r

(27 —1)(z? + 1) = 0(modn), (7.51)

provided that r is even. Because r is the order of z, it is not the case that z% — 1 = 0(modn).
Thus the first factor must be nontrivial. So long as (z2 + 1) # 0(modn), the second factor is also
nontrivial, so that if we take these two factors and compute their greatest common divisors with n,
we will have two nontrivial factors of n. It can be shown that this procedure fails with probability
at most 27%*1, where k is the number of distinct prime factors of n. For composite numbers,
k > 2, so that this procedure succeeds with probability at least % Shor’s algorithm is therefore a
polynomial-time probabilistic factoring algorithm.

7.6 Grover’s Algorithm

Grover’s algorithm extends some of the ideas inherent in Simon’s algorithm in very different di-
rections than Shor’s algorithm does. The algorithm finds an element in an unsorted database,
and also allows a number of related algorithms related to finding one distinguished element from a
collection: determining the minimum or the median of such a database, for example.

Formally, Grover’s problem provides an oracle O, that evaluates a function

f:40,1}" — {0, 1} (7.52)

5Shor’s algorithm can be generalized to find the order of elements over more complicated Abelian groups, not just
the multiplicative group modulo 7.

76 CHAPTER 7. QUANTUM ALGORITHMS

such that f(xg) = 1 for some single ¢ € {0,1}", and f(z) = 0 for all z # z¢. The task of an
algorithm is to determine the value of zg. Note that, unlike previous problems, there are a great
many “interesting” computational problems which can be reduced to this one. For a problem of
database search, for example, the oracle, on input « would query the database in place z, evaluate
the predicate “does x contain the requested value?”, and return 1 if and only if that predicate was
satisfied. Of course, the database need not be a black box, either. One could, for example, place a
circuit within the database to directly compute a function. The same exponential speedup as seen
for Simon’s problem would allow a quantum device to solve any problem in NPin polynomial time.
This possibility is not the case — in fact, Grover’s quadratic speedup is provably close the best
possible in general — but nevertheless, it is a much more broadly applicable algorithm than others
we have been considering.

7.6.1 The Grover Iteration

The oracle transformation Oy, is half the algorithm. In Grover’s algorithm, O, is always used
with the output qubit in state H|1), so that O, acts by phase inversion.

The other half of the algorithm is transformation, which we will call R (for “reflection,” as will
become clear shortly). It makes the algorithm simpler to pretend that the algorithm has access
to a second oracle Oy, one which computes a known function: f(z) = 1if x =0 and f(z) =0
otherwise. This oracle is just an n-bit controlled-NO'T, but regarding it as a second oracle makes
clear a formal symmetry in the structure of Grover’s algorithm. R is carried out in the following
steps:

1. Apply the n-bit Hadamard rotation H™ to the n input qubits.

2. Feed the n input qubits and the output qubit to Oy.

3. Multiply the phase of the system by —17

4. Apply H™ to the n input qubits again.
We call the transformation RO,, = H (")OOH (")O:,;0 one iteration, or I. Grover’s algorithm for
searching an unsorted database consists in applying I* (for some k& we will derive in a moment)

to the usual even superposition of all basis states, and then measuring the system. With good
probability, the result of this measurement will be |z¢).

Conceptually, under the right conditions, one iteration I will increase the amplitude of |zg)
while decreasing the amplitude of every other term.

The iteration starts with some distribution of amplitudes a1, ... asn_1 across the basis states in
the computational basis. The Hadamard rotation shifts this distribution into its Fourier represen-
tation. Steps 2 and 3 leave untouched the coefficient of |0") while inverting all other coefficients.
A second Hadamard rotation then translates these changes back into the computational basis.

"This step is not necessary, since it clearly does not affect any observable quantity of the system in any way. This
inversion is included for clarity of exegesis, as it makes a superfluous minus sign disappear

7.6. GROVER’S ALGORITHM 7

Because H takes |0") state equally to (or from, since H? = I) all states in the computational
basis, the coefficient of |0") in the Fourier basis is the average of the a;. Every other non-zero
component in the Fourier basis specifies that certain a; differ from this average value. value.
Flipping every coefficient other than that on |0"), therefore, inverts all information about the q;
except their average.

Thus, after the rotation back into the computational basis, all of the a; have been inverted
about their average value, which we notate a. If we write a; = a + (a; — a), this transformation
sends

ai — a—(a;—a) = 2a-—a. (7.53)
The transformation O, on the other hand, inverts the value of g at z¢, and leaves all other

values of g untouched. Consider, then, the effects of one full iteration on the initial state H ™ |O”)
the even superposition of all basis in terms of this function g. The algorithm begins with

(7.54)

27’L

for all 7. After Oy, is applied, a,, = \/; and all other a; are unchanged. The average of these 2"
values of a; is

1 1
7 T Date vm <1 L1) 1 (755)
on - on—1 \/2_71 :

Thus, by applying the identity above, the value of a,, becomes

2<h;JEf$%;&@W;) (7.56)

while the value of each other a; becomes

9. (1- 2 ! +(_1) e (7.57)
on=1) Jon ' Jam Jon on—1 :
The amplitude of the selected state has jumped significantly, while the amplitude of each of the

unselected states has declined slightly. In general, if the marked state begins the iteration with
amplitude 0 < ay, < % and the other states have the appropriate amplitude [> 0, then the change

in a4, as a result of applying one iteration of Grover’s algorithm is bounded below by \/W (and
[becomes smaller, but still > 0).

7.6.2 The Full Algorithm

Thus, repeated applications of the Grover iteration will eventually result in some iteration after
which £ > \[By the bound above, this takes place after at most Y22 + = /2™ + 1 repetitions.

Since az, > \/i’ a measurement of the system at this point, will produce the value |zo) with

probability at least % One additional query suffices to determine whether the |y) produced by the
algorithm really is such that f(y) = 1 (and thus y = z¢). If not, the overall process can be repeated

78 CHAPTER 7. QUANTUM ALGORITHMS

as necessary. To achieve probability of success greater than 1 — 27" requires at most r repetitions
of the overall algorithm, for total time (and queries) O(rv/27).

No classical algorithm can do as well. There is no strategy better than to guess at zg, feeding
each guess to the oracle. It is easy to show that this algorithm succeeds in expected time 277!,
or with probability greater than 1 — 27" in time (1 — 2 7)(2% 1). It is also easy to show that this
strategy is optimal. The quantum algorithm thus achieves a quadratic speedup over the classical
algorithm for this problem.

It is possible to be more precise about the number of iterations required to maximize the
probability of finding |z¢). Let us consider the actions of an iteration on vectors lying in the plane
spanned by |zp) and |s), the initial state. Suppose the system is currently in the state |y). The
oracle stage flips the |z¢) component of |y), i.e. flips |y) about the axis perpendicular to |z¢), which
we call |z5-) The rotation stage preserves only the |s) component of |y), i.e. flips |y) about the
|s) axis. Taken together, then, since the overall parity of the two transformations is non-inverting,
they must define a rotation. With what angle does this rotation act? As the following diagrams
illustrate, an arbitrary vector is rotated by twice the angle between |zg) and |s):

|0) |zo) |zo)
A A A
v)
”
/,|Z/> v /// v
5)
= > |a)
=
(7.58)
Let us call this angle 6. Since |z¢) and |zg) are perpendicular,
. 1
§in6 = sin Z(|sd), |s)) = cos £(|zo), |s)) = Lo Us) L (7.59)

lzo)lls)l v2m

In order to rotate a state which begins as |s) (i.e., rotated by 6 from |z)) so that it becomes |zg),
the single-iteration rotation needs to repeated until the overall rotation equals T radians. A quick

i
numerical argument shows that approximately

7
—\/2n 7.60
- (7.60)
rotations are required. Continued applications of the Grover iteration will continue to rotate |y)
by 26 each time. After §+/2" iterations |y) will be very close to —|s). In general, for any given n,
there is an optimal number of rotations to perform, after which further rotations will reduce the
amplitude of the desired state.

7.6. GROVER’S ALGORITHM 79

7.6.3 Extensions to Grover’s Algorithm

It could be the case that there are multiple solutions in the database. For the case where there
are known to be exactly r solutions to f(z) = 1, Grover’s algorithm can be modified to work by
changing the number of iterations required. Let |X) be the even superposition of all r solutions to
f(x) = 1. It is easy to check that

1 T
X0 == (; |xi>) : (7.61)
so that
(1X)) - (1)) = 4/ 55 (7.62)

As long as r remains relatively small compared with n, we can use the same small-sine approxima-

tion to conclude that close to
T 2"
A il 7.63
4V r ()

iterations are necessary. As the number of solutions increases, the quantum algorithm continues
its quadratic speedup over the classical one, which requires O(%) queries.

The algorithm can even be modified to work for an unknown number of solutions. In this case,
a random number of iterations from 0 to Zv/2" are carried out, followed by a measurement. This
procedure boosts boosts the expected probability of success — for ever possible r — to about %

In another direction, the algorithm can also be optimized to work faster when information about
the set of possible solutions is available. From the perspective of rotations, the virtue of a reflection
about |s) is that, for every possible |zg), |s) is not orthogonal to |zg), so that the two reflections
combined are nontrivial. Further, Z(|s),|z¢)) is the same for every zy. Thus, if it is known that
only some subset X C {0,1}" of possible z could be solutions, the algorithm can be tweaked to
favor those X. There are two such optimizations available.

First, the algorithm can start with a vector that is the evenly weighted superposition of the
elements of X, rather than of every element of {0,1}" (assuming that X can be computed effi-
ciently). This change gives the desired states larger initial amplitude, so that fewer iterations are
required to amplify them. Second, the reflection should be about a vector which has a large (and
ideally, equal) angle with each of the |z1),2 € X)at the cost of having smaller angle with the
|z+),z & X). This can be done by using the function that supplies the various values of z € X to
prepare a vector | X) which is close to the evenly weighted superposition of all the X. In place of
the Hadamard rotation, a rotation to a basis in which |X) is one of the elements is used. Then,
the inversion-about-average instead becomes an inversion about |X). Again, the speedup over a
similarly “structured” classical search problem is quadratic.

This general idea of iterated amplification has also been used to develop algorithms to find the
median of an unsorted set of 2" items, again with quadratic speedup.

Quadratic speedup for an exponential problem is not a fully encouraging result. From a com-
putational complexity point of view, Grover’s algorithm does not cross any major tractability

80 CHAPTER 7. QUANTUM ALGORITHMS

boundaries. It makes difficult problems easier, but not sufficiently easier to make them easy. Prag-
matically, given the head start that conventional computers have on quantum ones, it would be
surprising if quantum computers were to “catch up” sufficiently with classical ones to make their
use practical for Grover-type problems, even with this quadratic advantage.

What is more, Christof Zalka has proven that Grover’s algorithmn is asymptotically optimal. No
algorithm requires fewer queries than Grover’s for the general case. This result effectively gives us
a limit on the performance gains of quantum computers for unstructured problems. To do better
than a quadratic speedup, a quantum computer must exploit some sort of structure in the problem,
structure that is classically difficult to locate. This is the approach taken by Simon’s algorithm.

Chapter 8

Conclusion

8.1 Other Directions

8.1.1 Quantum Information Theory

Quantum information theory is a rich field, and one that is the focus of much current research.
The question of how information can be stored in and extracted from quantum states has been
subjected to several quite fruitful formalizations. Quantum information theory deals with the
degree to which states display entanglement, the amount of information that can be extracted by
making measurements on portions of entangled systems, and the relative information content of
different sets of measurements, among other issues. Quantum information theory also allows a
rigorous proof of the No Cloning Theorem, that it is impossible to make a copy of the state of an
arbitrary quantum system which is not entangled with the system being copied.

One exciting area of research in quantum information theory is quantum communication com-
plexity. Because entanglement is non-local, quantum communication has properties that can be
strikingly different from classical communication. Many of the algorithms we have considered can
be rephrased as communication problems: considering them as problems in which the goal is to
minimize the number of qubits exchanged between two parties reveals interesting features of these
algorithms. There are also a number of results on quantum measures of communication complexity
for various functions, including a number of lower-bound results.

8.1.2 Quantum Cryptography

The distinctive features of quantum computation also have interesting implications for crypto-
graphic schemes. If Alice has sent Bob a qubit entangled with a qubit she retains, it is possible for
her to change some properties of measurements made on Bob’s qubit at any time until he measures
it, even after she has physically “given” it to him. Manipulations of entanglement make some
cryptographic applications simpler: it is possible to create quantum channels which are provably
safe from eavesdropping, and to use “quantum teleportation” to transmit quantum states more ac-
curately than classical channels allow. On the other hand, other cryptographic challenges become

81

82 CHAPTER 8. CONCLUSION

much harder: it is possible for dishonest parties to cheat in ways that would have been classically
impossible. For example, quantum bit commitment is provably impossible.

Quantum cryptography generally involves less interaction between qubits than quantum compu-
tation, and the requirements on long-term storage are generally much looser. Usually, what matters
is getting a qubit from one place to another intact. For such reasons, quantum cryptography has
enjoyed more experimental success to date than quantum computation. Quantum channels have
been created which transmit information over distances of many meters, and their theoretically
useful properties have been experimentally confirmed.

8.1.3 Quantum Error Correction

It is generally agreed that quantum hardware is unlikely to improve in precision and stability by
the many orders of magnitude necessary to make reliable large-scale quantum computation directly
feasible. For this reason, a great deal of research attention is being directed to making quantum
computation fault-tolerant at the “software” or “circuit” level: creating schemes which can detect
and correct errors in stored qubits as they occur.

Quantum error correction is much harder than classical error correction for a number of reasons.
First, the transconductance nonlinearities of semiconductors, classically used to regenerate degraded
signals and restore voltages to their nominal levels, are not applicable to quantum systems. Unitary
time-evolution means that it is not possible to “compress” an “error” region inside state space into
a smaller “nominal” region. Second, the nature of entanglement is such that errors can propagate
to syndrome qubits used to detect errors. Error-correction schemes must be designed to prevent
errors from being inadvertently spread by the error-correction process itself. Most importantly, it
is not entirely clear what the right error models for quantum systems are. Conflicting error models
differ with respect to what kinds of errors must be prevented (phase shifts, amplitude errors, bit
flips, etc.) and how these errors are correlated (independent errors, concentrated in specific qubits,
uniform errors in all qubits, etc.). Different error-correction schemes defend against different kinds
of errors.

Nonetheless, a rich literature devoted to quantum error correction is developing. Some schemes
draw upon classical coding theory to create quantum codes which are resistant to bit flips and
can correct against detected errors. Other techniques exploit the “quantum watchdog” effect and
measure values that should be known with certainty, thus (with very high probability) collapsing
away the small component of the state which is in error. Still other techniques involve making
multiple copies of a quantum computation and repeatedly projecting these copies onto a small
subspace which they share, so that errors (differences) are eliminated while the computation (their
common component) is preserved.

8.1.4 Continuous Quantum Computation

We have focused, as has the vast majority of research into quantum computation, on quantum sys-
tems which encode discrete-valued information. Some proposals, however, see as quantum compu-
tation’s greatest strength as ability to work directly with continuously-valued systems. Feynman’s
original motivation for quantum computation was precisely such an application: modeling quan-
tum systems — a computationally difficult task classically, but one of great interest to physicists.

8.2. THE FUTURE OF QUANTUM COMPUTATION 83

Since then, a number of authors have developed more specific algorithmic methods for simulating
quantum systems on other quantum systems.

8.1.5 Quantum Language Theory

For almost any formal class of objects in the theory of computation, it is possible to define a quan-
tum version of that class. We have discussed some of these new classes (such as quantum Turing
machines and quantum circuits), but by no means all. There remains a great deal of work to be
done in mapping out such classes and determining their relationship to conventional classes. Quan-
tum finite-state automata, in particular, are more powerful than traditional finite-state automata
in some respects, but less powerful in others. The right mathematical formalization of quantum
pushdown automata and quantum grammars has thus far remained elusive, but attempts at pro-
ducing good descriptions of their properties have suggested that interesting results may lie in store
once the right formalizations have been worked out.

8.2 The Future of Quantum Computation

In theory, quantum computers are better at certain operations than classical ones. In practice, it
is difficult to predict whether quantum computers large enough to carry out those operations on a
non-trivial scale will ever be feasible. Present technology is inadequate to the task, but there do
not appear to be any intrinsic physical restrictions which would block the development of quantum
computers. The best that can be safely said is that within ten or fifteen years it will probably be
known whether quantum computers will ever be possible.

On the other end of the spectrum, the applications for quantum computers remain uncertain.
Grover’s algorithm, although suggestive, does not correspond well to any major open problems.
Indexing technology is too well-developed for a quadratic speedup of unordered search to be useful.
Shor’s algorithm has more immediate applications, but period-finding techniques are only applicable
within certain limited domains. Quantum computation has yet to turn up a reasonably-sized class
of general-purpose algorithms useful in multiple circumstances. Until it does so, the motivation for
building quantum computers remains more one of curiosity (and codebreaking) than of practical
utility.

In between these extremes, however, the picture is far less murky. Suppose, for the sake of
imagination, that tomorrow a physics research laboratory were to announce the successful creation
of a ten-thousand-qubit quantum device capable of carrying out tens of millions of elementary
operations before the onset of decoherence. Such a computer could carry out Shor’s algorithm,
factoring in seconds numbers that would take years to factor on classical computers. Algorithm
designers and complexity theorists could carry out experiments on quantum search heuristics and
average-case complexity of quantum problems. If one of them were to discover a new highly-efficient
quantum algorithm for a ubiquitous problem in computer science, it could be implemented on this
hypothetical computer with very little difficulty. Such a computer could be used “out of the box,”
as it were, even though many of its underlying principles differ radically from those of any computer
now in existence.

84 CHAPTER 8. CONCLUSION

The problems associated with making quantum computation possible. at every level between
hardware and algorithms, are not trivial problems. They are interesting problems, but they are also
solved problems. In the last ten years, in the near-complete absence of actual quantum computers,
the computer science and physics communities have formulated and resolved the major issues of
quantum computation.

The problems have come from many areas of computer science (and many related disciplines),
but the solutions have come from even more. Algorithm design has supplied applications for quan-
tum computers; complexity theory has commented on and refined those algorithms. Parallel and
scientific computation have supplied techniques for conceptualizing and simulating quantum com-
puters. Physics has provided the descriptions of reality on which quantum computation builds, and
suggested ideas for the construction of quantum computers. Linear algebra and automata theory
have developed abstract models of quantum computation. Computer architecture has explained
how to connect basic operations into complicated higher-level operations. Reversible computing
has strayed from its low-power computation origins to explain key characteristics of quantum com-
puters. Formal logic and programming language design have provided tools for describing and
reasoning about quantum systems and for expressing quantum computations abstractly. Coding
theory has shown how to improve the stability of quantum computations, even in the presence
of unreliable hardware. Game theory, learning theory, language theory, databases, and artificial
intelligence have all begun to explore their connections to quantum computation.

Quantum computation is a microcosm of computer science. Many of the defining problems of
traditional computation reappear in quantum contexts in subtle yet new forms. It is a measure of
how well developed “traditional” computer science is that quantum computation has been able to
draw upon so many distinct techniques and receive so many answers. It is a measure of how much
remains to be done in “traditional” computer science that quantum computation has been able to
open so many doors and pose so many questions.

Bibliography

General

The canonical repository for research in quantum computation is the quant-ph electronic preprint
archive at:

http://xxx.lanl.gov

John Preskill has taught a course at Caltech on quantum computation from the perspective of
physics. His (unpublished) lecture notes from that course are the best available “textbook” for the
field. At present, these notes are available at:

http://www.theory.caltech.edu/people/preskill/ph229/

The philosophical issues raised by quantum mechanics are quite complicated. In particular it is very
difficult to give an account of measurement that is both physically accurate and philosophically
reasonable. For an accessible and highly readable overview of these issues and the of principal
competing theories, see

D. Albert, Quantum Mechanics and Ezperience, Cambridge: Harvard University Press,
1992.

Hardware

A paper that discusses the use of NMR techniques to create quantum gates (although assuming
some knowledge of NMR in the reader) is

J. Jones et al., “Quantum Logic Gates and Nuclear Magnetic Resonance Pulse Se-
quences,” Journal of Magnetic Resonance, 135, pp. 353-360, 1998.
quant-ph/9805070

The polymer model of scalable NMR quantum computation is proposed in

85

86 BIBLIOGRAPHY

S. Lloyd, “A Potentially Realizable Quantum Computer,” Science 261, pp. 1569-1571,
1993.

A successful experimental realization of an NMR quantum computer carrying out out a two-bit
version of Grover’s search algorithm is described in

I. Chuang et al., “Experimental Implementation of Fast Quantum Searching” Physical
Review Letters 80, 15, pp. 3408-3411, 1998.

A successful experimental realization of an NMR quantum computer carrying out Deutsch’s algo-
rithm is described in

J. Jones and M. Mosca, “Implementation of a Quantum Algorithm to Solve Deutsch’s
Problem on a Nuclear Magnetic Resonance Quantum Computer,” Journal of Chemical
Physics 109, pp 1648-1653, 1998.

quant-ph/9801027

A slightly technical but highly readable review article on ion trap quantum computation is

A. Steane, “The Ion Trap Quantum Information Processor,” Applied Physics B 6/, 6,
pp- 623-643, 1997.
quant-ph/9608011

Quantum computation with photons is proposed in

I. Chuang and Y. Yamamoto, “A Simple Quantum Computer.”
quant-ph/9505011

The use of a single photon to store multiple qubits is proposed in

N. Cerf et al., “Optical Simulation of Quantum Logic,” Physical Review A 57, 3, pp
R1477-R1480, 1998.
quant-ph/9706022

The literature on quantum dots is notoriously dense. One of the more accessible articles on the
subject is

D. Loss and D. DiVincenzo, “Quantum Computation with Quantum Dots,” Physical
Review A 57, 1, pp. 120-126, 1998.
cond-mat/9701055

A non-technical introduction to quantum computation with anyons is contained in

87

J. Preskill, “Fault-Tolerant Quantum Computation,” Caltech/USC/MIT Institute for
Quantum Information and Computation Technical Report QUIC-97-034, 1997.
quant-ph/9712048

A discussion of some of the issues involved in simulating quantum computers with classical ones,
along with simulation results on the effects of decoherence and experimental inaccuracy on quantum
computations, can be found in

K. Obenland and A. Despain, “Models to Reduce the Complexity of Simulating a Quan-
tum Computer.”
quant-ph/9712004

Theory

The ability of quantum circuits to simulate quantum Turing machines is shown in

A. Yao, “Quantum circuit complexity,” Proceedings of the 34th Annual IEEE Sympo-
stum on Foundations of Computer Science, pp. 352-361, 1993.

The definitive paper on quantum Turing machines is

E. Bernstein and U. Vazirani, “Quantum Complexity Theory,” SIAM Journal on Com-
puting, 26, 5, pp. 1411-1473, 1997.

Deutsch’s three-bit universal gate is described in

D. Deutsch, “Quantum Computational Networks,” Proceedings of the Royal Society of
London A, 425, p. 73, 1989.

The first construction of a universal two-bit gate is given in

A. Barenco “A Universal Two-Bit Gate for Quantum Computation.”
quant-ph/9505016

A full proof that almost all two-bit gates are universal is contained in

D. Deutsch et al. “Universality in Quantum Computation.”
quant-ph/9505018

A comprehensive paper on the construction of larger quantum gates from smaller ones is

A. Barenco et al. “Elementary Gates for Quantum Computation.”
quant-ph/9503016

88 BIBLIOGRAPHY

Circuits

A general characterization of the use of quantum circuits as subroutines, along with several useful
equivalences, is proven in

D. Aharonov et al., “Quantum Circuits with Mixed States,” Proceedings of the 30th
Annual ACM Symposium on Theory of Computation pp. 20-30, 1997.
quant-ph/9806029

Our result on the simulation of irreversible computations with reversible ones, along with a wealth
of other results on time/space/reversibility trade-offs can be found in

M. Li and P. Vitanyi, “Reversibility and Adiabatic Computation: Trading Time and
Space for Energy,” Proceedings of the Royal Society of London A, 452, pp. 769-789,
1996.

quant-ph/9703022

A number of elementary constructions for reversible circuits computing arithmetical functions are
presented in

V. Vedral et al., “Quantum Networks for Elementary Arithmetic Operations.”
quant-ph/9511018

More advanced techniques can be found in

D. Beckman et al., “Efficient Networks for Quantum Factoring,” CALT-68-2021, 1996.
quant-ph/9602016

P. Gossett, “Quantum Carry-Save Arithmetic,” SGI-98-5433-3b, 1998.
quant-ph/9808061

C. Zalka, “Fast Versions of Shor’s Quantum Factoring Algorithm,” 1998
quant-ph/9806084

Languages

The insight that uniqueness types can express the restrictions imposed by reversibility is due to
Greg Baker, and can be found in his thesis from Macquarie University (currently unpublished).

The programming language QCL, being developed by Bernhard Omer for his doctoral thesis at

the Technical University of Vienna, incorporates a number of the techniques described in chapter
6, although not all. It is documented at

http://tph.tuwien.ac.at/~oemer/qc/index.html/

89
Linear logic was first developed by Girard in
J.-Y. Girard, “Linear Logic,” Theoretical Computer Science 50, pp. 1-102, 1987.
A detailed presentation of the use of linear logic to implement uniqueness types can be found in

E. Barendsen and S. Smetsers, “Uniqueness Typing for Functional Languages with
Graph Rewriting Semantics,” Mathematical Structures in Computer Science 6, pp. 579-
612, 1996.

Linear LISP is described, to a first approximation, in

H. Baker, “ ‘Use-Once’ Variables and Linear Objects — Storage Management, Reflec-
tion, and Multi-Threading,” ACM Sigplan Notices 30, 1, pp. 45-52, 1995.

Algorithms

Simon’s problem is described in

D. Simon, “On the Power of Quantum Computation,” Proceedings of the 35th Annual
IEEE Symposium on the Foundations of Computer Science, pp. 116-123, 1994.

Shor’s algorithm was first presented at the 1994 Annual IEEE Symposium on Foundations of Com-
puter Science , along with a closely related algorithm for efficiently computing discrete logarithms.
An expanded version of the conference paper is

P. Shor, “Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithm
on a Quantum Computer,” SIAM Journal on Computing 26, 5, p. 1484-1509, 1997.
quant-ph/9508027

The circuit efficiently implementing the quantum Fourier transform is presented in

D. Coppersmith “An Approximate Fourier Transform Useful in Quantum Factoring,”
IBM Research Report RC19642.

An important optimization of the quantum Fourier transform to require only a linear number of
gates is described in

R. Griffiths and C.-S. Niu, “Semiclassical Fourier Tranform for Quantum Computation,”
Physical Review Letters 76, pp. 3228-3231, 1996.
quant-ph/9511007

90 BIBLIOGRAPHY
Grover’s algorithm is described in

L. Grover “A Fast Quantum Mechanical Algorithm for Database Search,” Proceedings
of the 28th Annual ACM Symposium on the Theory of Computing, pp. 212-219, 1996.
quant-ph/9605043

A proof that the algorithm is optimal (adapted from Christof Zalka’s original lower bound) is
contained in

L. Grover “How Fast Can a Quantum Computer Search?”
quant-ph/9809029

A unified treatment of a number of important quantum algorithms as applications of Fourier anal-
ysis can be found in

R. Josza, “Quantum Algorithms and the Fourier Transform,” Proceedings of the Royal
Society of London A 454, 1969, pp. 323-337, 1998
quant-ph/9707033

A unified treatment of a number of important quantum algorithms as applications of phase esti-
mation techniques can be found in

R. Cleve et al., “Quantum Algorithms Revisited,” Proceedings of the Royal Society of
London A 454, 1969, pp. 339-354, 1998
quant-ph/9708016

Other Directions

Preskill’s survey article on fault-tolerant quantum computation is also a good introduction to the
literature on quantum error correction.

A good survey of quantum information theory is

C. Bennett and P. Shor, “Quantum Information Theory,” IEEE Transactions on Infor-
mation Theory 44, p. 2724-2743, 1998.

A brief introduction to quantum cryptography, along with an extensive bibliography in the field,
can be found in

S. Lomonaco, “A Quick Glance at Quantum Cryptography,” Cryptologia, 23,1,pp.1-41,
1999
quant-ph/9811056

91

An explanation of the impossibility of quantum bit commitment can be found in

H. Chau and H.-K. Lo, “Making An Empty Promise With A Quantum Computer,”
Fortschritte der Physik 46, pp. 507-520, 1998.
quant-ph/9709053

A reasonable introduction to quantum communication complexity is

H. Buhrman et al., “Quantum vs. Classical Communication and Computation,” Pro-
ceedings of the 30th Annual ACM Symposium on the Theory of Computing, 1998.

A proof that quantum finite-state automata are inequivalent to classical finite-state automata can
be found in

A. Kondacs and J. Watrous, “On the Power of Quantum Finite State Automata,”
Proceedings of the 38th Annual IEEE Symposium on Foundations of Computer Science,
pp. 66-75, 1997.

An interesting, if somewhat questionable, set of definitions for quantum context-free grammars and
quantum push-down automata are proposed in

C. Moore and J. Crutchfield, “Quantum Automata and Quantum Grammars.”
quant-ph/9707031

