
All Smart Contracts  
Are Ambiguous

James Grimmelmann

Cornell Tech
November 29, 2018

In this talk

• Legal contracts are often ambiguous.

• Are smart contracts ambiguous too?

• Yes they are.

• It’s okay.

Contracts and ambiguity

An ambiguous contract

“US Fresh Frozen Chicken, Grade A, Government Inspected,
Eviscerated, 2½-3 lbs. and 1½-2 lbs. each, all chicken individually
wrapped in cryovac, packed in secured fiber cartons or wooden
boxes, suitable for export

75,000 lbs. 2½-3 lbs........@$33.00

25,000 lbs. 1½-2 lbs........@$36.50

per 100 lbs. FAS New York, scheduled May 10, 1957 pursuant to
instructions from Penson & Co., New York.”

Frigaliment Importing Co. v. B.N.S. Int’l Sales Corp., 190 F. Supp.
116 (S.D.N.Y. 1960)

What is “chicken”?

• Buyer (plaintiff): “a young chicken suitable for
broiling and frying”

• Seller (defendant): “any bird of that genus”

• The court examines the parties’ negotiations (in
English and German), dictionaries, trade usage, and
USDA regulations; finds evidence on both sides, and
concludes, “For plaintiff has the burden of showing
that ‘chicken’ was used in the narrower rather than
in the broader sense, and this it has not sustained.”

What if the contract said “young chicken
suitable for broiling”?

What’s “suitable”? What’s “broiling”?

An inescapable problem

• The meaning of natural language is social

• Not just what the speaker intended

• Even “objective” sources like dictionaries
depend on how people actually use words

• Since the legal effect of a contract depends on
the interpretation of its terms …

• The meaning of a contract is a social fact

Smart contracts

An escrow contract

An escrow “contract”

Three motivations

• Ambiguity: legal contracts are written in
ambiguous natural languages

• Corruption: judges who interpret legal
contracts can be threatened or bribed

• Enforcement: parties might be able to ignore a
court’s judgment against them

The argument for  
smart contracts

• Programming languages are unambiguous

• Computers are incorruptible

• Enforcement is automatic

Standard toy example

• The “dispense Skittles”
logic is completely
specified in code

• Threats literally mean
nothing to the machine

• No money, no Skittles

Scaling up the  
vending machine

• You can’t inspect the machine’s code

• Smart contracts should be open source …

• You can threaten the machine’s owner

• Smart contracts should be decentralized …

• You can cut a hole through the window

• Smart contracts should directly control resources …

• … solution: use a blockchain

Smart contracts  
on a blockchain

Blockchain?

Key blockchain ideas

• A transactional ledger that …

• … is cryptographically secure

• … has no centralized recordkeeper

• … uses incentives to ensure consensus

Bitcoin as a  
distributed ledger

• Every participant has copy of a shared ledger

• Records transfers of Bitcoin among users

• New transactions accepted only if:

• Cryptographically signed by the sender

• Consistent with previous transactions

Bitcoin:
achieving consensus

• Miners compensated with (a) mining rewards
and (b) transaction fees

• Proof of work: rewards proportional to effort

• Consequence: userbase too large to corrupt

• Participants must agree on transactions

• Penalty for disagreement is incompatibility

• Strong incentive to accept valid blocks

Smart contracts on a
blockchain

• Specify a virtual machine (VM)

• Blockchain transactions update the VM

• Blockchain protocol forces VM consistency

• VM primitives can affect shared resources

• VM specification provides a programming
model with desired security properties

Ethereum-style  
smart contracts

• To create: write a program (e.g. in Solidity)

• Compile it to EVM bytecodes

• Submit (and pay for) a transaction setting up the
program as a smart contract on the shared VM

• To use: send a transaction to the program

• This triggers state changes, resource
distribution, more transactions, etc.

Smart contract utopia?

(1) Write the contract as a computer program

• The program is unambiguous

(2) Put the program on a blockchain

• Miners are collectively incorruptible

(3) Give it control of the relevant assets

• Results are enforced automatically

Or not

Other critiques

• Real-world contracting parties don’t actually want
perfect unambiguity

• One person’s “corruption” is another person’s
“democracy” or “rule of law”

• Automated enforcement may be too efficient and
have other bad consequences

• Mining is an environmental catastrophe

• There is a massive blockchain bubble

The claim for
unambiguity

• The meaning of “chicken” is a social fact

• There are dictionaries, patterns or speech, usage in
multiple trades, etc.

• Its meaning can vary and be misunderstood

• The meaning of 2+2 in Python is a technical fact

• This expression will always evaluate to 4

• Its meaning never changes, and if you think it
evaluates to 5 that is your mistake

Where does program
meaning come from?

• Why doesn’t 2+2 in Python evaluate to 5?

• Not because that’s what “2+2” inherently means

• Any more than “chicken” inherently means
any gallus gallus domesticus, even one that is
wholly unsuitable for cooking

• In 1991, GvR picked + as the addition operator

• He could have picked ++ instead

Usual sources of  
program meaning

• Use a program: a reference implementation
whose behavior is by stipulation treated as
correct

• Use natural language: a specification that
defines the behavior of a correct
implementation

• Use mathematics: a formal semantics that
identifies programs with abstract entities

Three questions

• Where do these come from?

• Some people got together to write them

• What makes one of them definitively correct?

• Because people agree that it is

• What language are we running?

• “Python” 2.7 is different from “Python” 3.6

• These questions can be answered only by reference to a
community of programmers and users

Program meaning is a
social fact, too

• Yes, 2+2 in Python is unambiguously 4

• But that’s only because Python users have
already agreed on what “Python” is

• If they agreed differently, “Python” would be
different, and so might 2+2

• This happens every time there’s a new version

• Technical facts depend on social facts!

Fixing program meaning

• A technical community agrees on a process for
deriving a functional meaning from texts

• Developers implement that process on different
computers, with different tools, etc.

• Most of the time, running a program on most
implementations yields the same result

• We perceive as fixed technical facts the successful
result of coming to a social consensus

Blockchain governance

Does this matter?

• We might be able to ignore all of this if smart-
contract blockchains never had trouble

• But in fact, there are fights over the meanings
of blockchain programs all the time

Example 1: Oracles

• How does a smart contract observe the world?

• An oracle has to tell it what happened

• E.g., a trusted party or a fixed data feed

• This is also a problem of ambiguity

• The world is complex

• Contract terms map ambiguously onto the world

• The oracle resolves the ambiguity

Oracles and consensus

• What if the oracle is … corrupt?

• Go back in time and choose a better oracle!

• Consensus oracles seek correct agreement by
multiple participants about the world

• The truth is unobservable by the contract, so
protocols typically give incentives to agree

Two takeaways

• The obvious one:

• An oracle’s resistance to corruption is only  
as good as its consensus mechanism

• The subtle one:

• An oracle’s ability to resolve ambiguity is only
as good as its consensus mechanism

Example 2: Upgrades

• In 2017, Bitcoin upgraded to implement
“segregated witness”

• Some data moved out of the blockchain,
effectively allowing more transactions

• The blockchain before the upgrade and the
blockchain after have different semantics

• Some transactions that were valid under the
old rules are invalid under the new ones

What do you mean
“Bitcoin upgraded?”

• Bitcoin doesn’t upgrade itself

• Bitcoin’s users collectively upgraded

• A critical mass activated segregated witness,
and everyone else went along

• Like moving from Python 3.6 to Python 3.7

Consensus all the way down

• The “Bitcoin blockchain” exists only because
and only insofar as people agree on what it is

• Bitcoin’s consensus protocols help coordinate
and incentivize that agreement

• But the protocols cannot establish their own rule
of recognition … a user community can always
collectively change or ignore them

• This is what happens in an upgrade

Example 3: Bitcoin Cash

• A long-running dispute over Bitcoin block
size caused some users to fork Bitcoin Cash

• Bitcoin has ~1MB blocks

• Bitcoin Cash had 8MB blocks (now 32MB)

• The two blockchains have different semantics

• Is a block valid? The question can’t be
answered without specifying by whom

Forks and ambiguity

• Forks are consensus failures

• Each blockchain by itself achieves local
consensus, but there is no global consensus

• Forks create explicit ambiguity

• Each blockchain by itself is “unambiguous”
but the choice of blockchains creates ambiguity

• These are inextricably linked

Upgrades and forks

• Literally anything on a blockchain is subject to
the latent ambiguity that the blockchain itself
could be upgraded out from underneath it

• Whether this happens is inherently political

• The anti-change faction yields: upgrade

• The pro-change faction yields: status quo

• Neither faction yields: fork

Example 4: The DAO

“The terms of The DAO Creation are set forth in the smart
contract code existing on the Ethereum blockchain at
0xbb9bc244d798123fde783fcc1c72d3bb8c189413.
Nothing in this explanation of terms or in any other
document or communication may modify or add any
additional obligations or guarantees beyond those set forth
in The DAO’s code.”

The DAO

• April 2016: The DAO begins crowdfunding
for a democratic online venture capital fund

• May 2016: 11,000+ investors put $150M+ of
assets into The DAO

• June 2016: An anonymous hacker drains
$50M of the assets into their own account

Ethereum Classic

• Following the DAO hack, Ethereum upgraded
to a new version that specifically unwound the
DAO transactions

• Not everyone was happy with this, and some
users were unhappy enough to fork Ethereum
Classic, which didn’t have this “upgrade”

• The two blockchains have different semantics

The DAO (legal) contract

• The English phrase “the smart contract code
existing on the Ethereum blockchain at
0xbb9bc244d798123fde783fcc1c72d3bb8c18941”
is ambiguous

• “the Ethereum blockchain” does not uniquely
refer: do you mean ETH or ETC?

• It uniquely referred when the contract was
drafted, but no longer

Where to go from here?

All is not lost

• Smart contracts are based on social facts

• Social facts are empirically contingent: they
are always open to contestation and change

• Legal contracts are based on social facts, too

• And a lot of the time, they work just fine!

• Smart contracts cannot be perfectly unambiguous

• But they can be unambiguous enough

Focus on the consensus

• Blockchains make consensus explicit

• The mechanism that holds them together is
the protocol for agreeing on the next block

• Put another way, every smart contract is
vulnerable to a “51%” attack

• Where the “attack” could happen through
persuasion as well as raw computational power

The contractual is political

• A blockchain whose governance fails will collapse,
fork, be hijackable, etc. —

• All these threaten the smart contracts on it

• Contract law depends on social institutions that
establish and limit government

• Smart contract code depends on social institutions
that establish and limit blockchain governance

• There is no escape from politics

Good blockchain
citizenship

• (Practically, not perfectly) unambiguous smart contracts
require correct, stable blockchains

• Blockchain correctness and stability require a good
blockchain community

• Correctness comes from making good changes

• Stability comes from not making bad ones

• Not just consensus protocols — it’s also the mailing
lists, the depth of developer knowledge, user
commitment to long-term health, etc.

Conclusion

Blockchains are  
made out of people

Questions

