
The Jurisprudence of Software
James Grimmelmann 

Intellectual Property Scholars Conference 
August 8–9, 2019



The big idea



Compare and contrast

• How lawyers interpret legal texts 

• How computers interpret software



Language

Law

Software

Philosophy  
of law

Philosophy  
of software

Law of 
software

1 2
3



More specifically

1. Use concepts from the philosophy of law — 
speech acts, interpretation, etc. — to give a 
rigorous account of how software works 

2. Use that account to illuminate questions in 
legal doctrine: e.g., how should judges interpret 
smart contracts? 

3. Use that account to illuminate questions in 
legal theory: e.g., is the ideal judge a computer?



Software speech acts



Legal speech acts

• “Be it hereby enacted that …” is a speech act 

• It has the illocutionary force of changing the 
law (and possibly also of commanding 
subjects to comply and officials to act.) 

• Other legal speech acts: contracts, wills, ToS 

• They have their own illocutionary forces



Software speech acts

• print(2+2) is also a kind of speech act 

• When uttered to a Python interpreter, it causes 
the computer to display 4 

• We could talk about this mechanistically, deny 
that the computer understands anything, and 
deny that communication is taking place 

• But this overlooks the ways in which 
print(2+2) is linguistically meaningful



Law thinks that  
software is speech

• E.g., Bernstein v. DoJ: software can be First-
Amendment-covered speech 

• E.g., Computer Associates v. Altai: software can be 
copyrightable 

• Neither of these cases is intelligible if software is 
inherently only a functional artifact 

• For better or for worse, we program computers 
with words that have meaning to humans



Who is the interpreter?

• Legal texts are addressed to people: citizens, 
counterparties, guests, and especially judges 

• They mean what they mean to people 

• Programs are addressed to computers: they 
consists of a series of commands to execute 

• Do they mean (only) what they cause 
computers to do?



Types of meaning

• Program meaning: what a program causes a 
computer to do 

• Programmer meaning: what a bug-free version of 
the program would do 

• Incidental meaning: what else a program’s text 
conveys to other programmers who read it 

• User meaning: what a program communicates to a 
user



from itertools import repeat 
for feet in [3,3,2,2,3]: 
     print " ".join("DA-DA-DUM" 
     for dummy in [None] 
for foot in repeat(metric", feet)) 

DA-DA-DUM DA-DA-DUM DA-DA-DUM 
DA-DA-DUM DA-DA-DUM DA-DA-DUM 
DA-DA-DUM DA-DA-DUM 
DA-DA-DUM DA-DA-DUM 
DA-DA-DUM DA-DA-DUM DA-DA-DUM



Types of meaning

• Program meaning: (syntax error) 

• Programmer meaning: print “DA-DA-DUM…” 

• Incidental meaning: the source is a limerick 

• User meaning: the output is a limerick



Applications, e.g.



Unauthorized access

• Many programs implicitly communicate to 
users the scope of permission to use them 

• United States v. Morris: what is the “intended 
function” of Sendmail? 

• What would a reasonable user understand as 
the programmer meaning of this program?



Ideal interpreters

• Is the ideal of a judge another programmer who 
helps the legislature test and debug its code? 

• Or is the ideal of a judge a reliable computer who 
correctly executes the legislature’s code? 

• Program meaning shows that nearly 
discretionless interpretation is possible 

• But not even the most rigid versions of 
textualism go that far



Legal drafting and 
software development

• Can effective software development 
techniques be pulled back into law? 

• Textual aspects: type-safe languages, 
modular designs 

• Toolchains: editors, version control, etc. 

• Program analysis and debugging



Questions



Questions for you

• What should I call it? 

• “The Jurisprudence of Software” is boring 

• What should I read? 

• Philosophy of language, law, and CS 

• Tech-law theory: “code is law,” algorithmic 
decision-making, computable law



Questions for me


