The Jurisprudence of Software

James Grimmelmann

Intellectual Property Scholars Conference
August 8—9, 2019



The big idea



Compare and contrast

e How lawyers interpret legal texts

e How computers interpret software



Law

Philosophy Law of

of law software

Language Philosophy Software

of software



More specifically

1. Use concepts from the philosophy of law —
speech acts, interpretation, etc. — to give a
rigorous account of how software works

2. Use that account to illuminate questions in
legal doctrine: e.g., how should judges interpret
smart contracts?

3. Use that account to illuminate questions in
legal theory: e.g., is the ideal judge a computer?



Software speech acts



Legal speech acts

e “Be it hereby enacted that ...” is a speech act

o It has the illocutionary force ot changing the
law (and possibly also of commanding
subjects to comply and officials to act.)

e Other legal speech acts: contracts, wills, ToS

e They have their own illocutionary forces



Software speech acts

* print(2+2) is also a kind of speech act

 When uttered to a Python interpreter, it causes

the computer to display 4

e We could talk about this mechanistically, deny

that the computer understands anything, and
deny that communication is taking place

* But this overlooks the ways in which
print(2+2) is linguistically meaningful



Law thinks that
software is speech

E.g., Bernstein v. Do]: software can be First-
Amendment-covered speech

E.g., Computer Associates v. Altai: software can be

copyrightable

Neither of these cases is intelligible if software is
inherently only a functional artifact

For better or for worse, we program computers
with words that have meaning to humans



Who is the interpreter?

e Legal texts are addressed to people: citizens,
counterparties, guests, and especially judges

 They mean what they mean to people

e Programs are addressed to computers: they
consists of a series of commands to execute

* Do they mean (only) what they cause
computers to do?



Types of meaning

Program meaning: what a program causes a
computer to do

Programmer meaning: what a bug-free version of
the program would do

Incidental meaning: what else a program’s text
conveys to other programmers who read it

User meaning: What a program communicates to a
user



from itertools import repeat

for feet in [3,3,2,2,3]:
print " ".join("DA-DA-DUM"
for dummy 1n [None]

for foot 1n repeat(metric", feet))

DA-DA-DUM
DA-DA-DUM
DA-DA-DUM
DA-DA-DUM
DA-DA-DUM

DA-DA-DUM
DA-DA-DUM
DA-DA-DUM
DA-DA-DUM
DA-DA-DUM

DA-DA-DUM
DA-DA-DUM

DA-DA-DUM



Types of meaning

Program meaning: (syntax error)
Programmer meaning: print " DA-DA-DUM..."”
Incidental meaning: the source is a limerick

User meaning: the output is a limerick



Applications, e.g.



Unauthorized access

e Many programs implicitly communicate to
users the scope of permission to use them

e United States v. Morris: what is the “intended
function” of Sendmail?

e What would a reasonable user understand as
the programmer meaning of this program?



[deal interpreters

Is the ideal of a judge another programmer who
helps the legislature test and debug its code?

Or is the ideal of a judge a reliable computer who
correctly executes the legislature’s code?

Program meaning shows that nearly
discretionless interpretation is possible

But not even the most rigid versions of
textualism go that far



Legal dratting and

software development

e Can effective software development

techniques be pulled back into law?

Textual aspects: type-safe languages,
modular designs

Toolchains: editors, version control, etc.

Program analysis and debugging



uestions



Questions for you

e What should I call it?

e “The Jurisprudence of Software” is boring
e What should I read?

e Philosophy of language, law, and CS

* Tech-law theory: “code is law,” algorithmic
decision-making, computable law



Questions for me



