
Programming Languages and Law: 
A Research Agenda for a New Field

James Grimmelmann

ProLaLa22

January 15, 2022

In this talk

• Law using/of/and x …

• … for x = programming languages

• 10 big ideas for the future of PL+law

Ten big ideas for the
future of PL+law

1. Everything law always
wanted to know about PL

2. Hybrid contracts

3. And you get a legal DSL

4. Orthogonal legal primitives

5. Legal drafting languages

6. Legal design patterns

7. Legal design principles

8. An IDE for lawyers

9. Legal Jupyter notebooks

10. What is interpretation?

Law of x

Law using x

Law and x

Law of x

• Law directly regulates the field of x

• E.g., let x = “medicine” in …

• … licensure, malpractice, billing, etc.

• Hopefully the legislatures know something
about the field they’re regulating

Law using x

• Law asks questions that x can answer

• Administrative law, evidence law, etc. deal
with how to incorporate technical expertise

• E.g., let x = “marine ecology” in …

• … what is the thermal impact of power-
plant discharge on “a balanced indigenous
population of shellfish, fish, and wildlife”?

Law and x

• The methods of x provide novel ways to formulate
and answer legal questions

• E.g., let x = “microeconomics” in …

• … what is the most efficient measure of
damages in case of contractual breach?

• E.g., let x = “corpus linguistics” in …

• … what was the original public meaning of
“keep and bear Arms”?

Successful examples of x

• Anthropology

• Economics

• History

• Linguistics

• Literature

• Philosophy

• Political Science

• Psychology

• Sociology

Law and PL

Zooming in on  
law and PL

• Law and …

• … technology

• … computers and the Internet

• … computer science

• … programming languages

CS subfields

• Some CS fields treat law as a fruitful problem domain

• Symbolic AI models legal reasoning

• ML etc. treat law as data

• Some legal areas draw on ideas from CS fields

• Privacy law draws on security

• Telecom law draws on networking

• Antidiscrimination law now draws on ML

“The programmer, like the poet, works only
slightly removed from pure thought-stuff. He
builds his castles in the air, from air, creating by
exertion of the imagination. Few media of creation
are so flexible, so easy to polish and rework, so
readily capable of realizing grand conceptual
structures.”

–Frederick P. Brooks, Jr., The Mythical Man-Month

“The programmer, like the poet lawyer, works only
slightly removed from pure thought-stuff. He
builds his castles in the air, from air, creating by
exertion of the imagination. Few media of creation
are so flexible, so easy to polish and rework, so
readily capable of realizing grand conceptual
structures.”

–Frederick P. Brooks, Jr., The Mythical Man-Month?

Program text ~ legal text

• CS and law are both linguistic professions:

• They use language to create, manipulate,
and interpret complex abstractions

• A programmer who uses the right words in
the right way makes a computer do something

• A lawyer who uses the right words in the right
way changes people’s rights and obligations

The PL advantage

• Some fields (e.g., AI) deal with legal structures

• Other fields (e.g., NLP) deal with legal language

• PL provides a principled, systematic framework
to analyze legal structures in terms of the
linguistic expressions lawyers use to create them

• PL abstractions have an expressive power in
capturing the linguistic abstractions of law

Past, present, and future

Law of PL

• Programming is not a regulated profession

• But programs are subject to law in many ways

• And some of those laws care about how
programs work, what they mean, how
programmers write them, etc.

• PL experts have relevant expertise here!

(1) Everything law always
wanted to know about PL
• Patent: Does software consist entirely of math?

In what sense is an algorithm an abstract idea?

• Copyright: Which parts of a program are
standard? Required for compatibility?

• First Amendment: What constitutes the
“speech” in writing, sharing, or running code?

• etc. …

Contract DSLs

• Composing Contracts (2000): combinators for
financial option contracts with evaluation semantics

• Extensive work on logics to model deontic, multi-
party, and event-driven structure of contracts

• “Smart” “contract” languages substitute
automation for legal enforcement

• Hybrid projects combine machine-readable logic
with human-readable terms

(2) Hybrid contracts

• Write contractual terms once and compile
them to “legal code” or “computer code”

• Prevent or at least detect bugs in legal logic

• Automate execution of parts of a contract

• Have a clear story about the legal effects of
executing the automated part, and vice versa

Legal DSLs

• Orlando: future interests in property

• Translation from natural-language-like PL to
trees of interests, with operational semantics

• Catala: legislative defaults

• Translation from declarative PL with exceptions
to lambda calculus with default

• Being used to rewrite and verify the
implementation of the French tax code

(3) And you get a legal DSL

• Which legal areas are already PL-like?

• They use rules rather than standards

• They have recurring patterned structures

• Their participants highly value clarity

• Low-hanging fruit:

• Anything transactional (e.g. IP licensing, wills)

• Lots of property law (e.g. title assurance)

Legal logic programming

• Long history of symbolic AI for legal reasoning

• But distinctive characteristics of legal reasoning
are not well supported out of the box

• E.g., counterfactuals, non-monotonic inference,
deontic modalities, hierarchies of authority

• Response: adopt PLs with appropriate language
features for the problem domain

• E.g. PROLEG, L4, DCPL, LLD …

Legal calculi

• Composing Contracts uses combinators

• Catala uses lambda calculus with exceptions

• Orlando uses a non-Turing-complete calculus
with sequencing and termination

• There seems to be something fruitful about
compiling legal expressions to this form

(4) Orthogonal legal primitives

• Examples:

• Sequencing, conjunction, disjunction

• Defaults and exceptions

• Rights and duties, powers and liabilities

• Do they have clean minimal formalizations?

• Can they be combined?

• Do we need legal-specific back-end support?

Language features

• Lawsky (2017) observes that the scope of
statutory definitions is often ambiguous

• Some drafting choices (e.g. “reasonable”) are
vague, but these should be unambiguous

• Proposes logical forms with explicit scoping

• In other words, use a programming language
whose features promote clear and correct code!

(5) Legal drafting languages

• What other language features would help clean
up legal drafting?

• Variables and binding

• Cross-referencing

• Counterfactuals and reflection

• Substitution

• …

Design patterns

• General, repeatable template for solutions to a
commonly occurring class of design problems

• Roots in (physical) architectural theory

• Adapted to object-oriented software design
and to UI/UX, with a strong PL angle

• Nascent legal-design-patterns literature

• With its own debts to architectural theory

(6) Legal design patterns

• Identify proxies, decorators, singletons, etc. in
regulatory regimes and complex transactions

• Craft pattern languages for specific legal areas

Design principles

• Example: a modular system decomposes into
subsystems that are weakly coupled to each other

• Roots in cybernetics

• A central principle of computer system design

• Often achieved with explicit PL features

• Smith: extensive theory of modularity in property

• Other applications: legislative drafting, contracts

(7) Legal design principles

What other PL design
principles are relevant?

• Recursion

• Compositionality

• Type safety

• Extensibility

• …

Where else in law do
they show up?

• Legal drafting

• Commercial law

• Corporate law

• Evidence

• …

 Programming tools

• Modern IDEs and toolchains are outstanding

• But legal drafting often means Microsoft Word

• If you’re lucky, XML

• If you’re not, WordPerfect

• This is a moment of rapid legaltech ferment

• Some of which is based on serious PL work

(8) An IDE for lawyers

• What kinds of language-aware IDE support
would be useful to legal drafters?

• Syntax highlighting, auto-formatting, …

• Type-checking, linting, static analysis, …

• Version control with branches, diffs, …

• Unit tests, fuzz testing, …

• Interactive debugging, breakpoints, …

Tools for teaching  
and modeling

• PL approaches improve understanding:

• Visualization — Littleton uses a railroad-
diagram library to visualize interests

• Interactivity — Lawsky Practice Problems

• Literate programming — Catala, Cicero

(9) Jupyter notebooks for law

• How to visualize legal structures using PL
concepts like ASTs, control-flow graphs, etc.?

• How to tighten the feedback loop between
writing down legal text and seeing what it does?

• How to mix the human-facing and computer-
facing parts of literate legal programs?

• How to do all three at once?

Philosophical questions

• Legal and PL scholars study interpretation:
how to understand what a text means

• Maybe they can learn from each other?

• Of intellectual interest to both fields

• Of practical interest for PL+law systems

(10) What is interpretation?

• What is the difference between how a person
interprets a text and how a computer does?

• How (if at all) should computers change how
legal texts are written and interpreted?

• Does legal interpretation have any lessons for
PL interpretation?

• My book on this was due a year ago …

Closing thoughts

Interdisciplinary work is hard!

• Different fields have different methods,
concepts, standards of rigor, authorities,
writing styles, etc.

• Legal scholars can be overconfident amateurs
outside of their own field (“law-office history”)

• And vice versa (*cough* economics)

• Collaborations and dual training help a lot

Principled > ad hoc

• PL has a long history of developing languages,
tools, and concepts to tame the chaos of coding

• Law and legal tech could use some of that

• E.g., Catala and the French tax code

• Formalizing a body of law forces you to understand
it in a much deeper way

• Knuth: “Science is what we understand well
enough to explain to a computer.”

Discussion

