
A Programming Language for  
Estates and Future Interests

James Grimmelmann

Cornell Tech and Cornell Law School

Cornell: From Ithaca to NYC

May 19, 2022

In this talk

• Motivation

• Inspiration

• Formalization

• Implementation

• Demonstration

• Reflection

Collaborators

• Shrutarshi Basu (CS Ph.D. 2018)

• Nate Foster (CS)

• Anshuman Mohan (CS Ph.D.)

• Shan Parikh (CS M.Eng. & B.S. 2021)

• Ryan Richardson (CS B.S. 2021)

Publications

• Property Conveyances as a Programming Language, in
Proc. 2019 ACM SIGPLAN Int’l Symp. on New Ideas,
New Paradigms, & Reflections on Programming and
Software (Onward!) 128 (2019)

• A Programming Language for Estates and Future
Interests, Yale Journal of Law and Technology
(forthcoming)

Motivation

Pop Quiz

What interests does the following conveyance create?

“To Sulu for life, then to Uhura and her heirs, but if she
marries, then to McCoy and his heirs.”

(Peter T. Wendel, A Possessory Estates and Future
Interests Primer 116 (3d ed. 2007)

Answer

• Sulu has a life estate

• Uhura has a vested remainder in fee simple subject to
divestment

• McCoy has a shifting executory interest in fee simple

Estates in Land and Future Interests

• Division of land among multiple owners over time

• Doctrines developed over the past millennium

• Highly formalistic, and extremely rigid

Future interests in legal education

• Future interests were the traditional core of the first-year
law-school course in Property

• Students might spend several months on them

• Today, a week or two is more common

• Notoriously dry, notoriously incomprehensible

• There are study aids just for this part of the course!

• Frequent target of student complaints

Quotes

• “The law is supposed to be a learned profession. Would
not that supposition have to be revised if lawyers could no
longer talk intelligently about fee tails after possibility of
issue extinct, or distinguish a destructible contingent
remainder from an executory interest in the nature of a
shifting use?” — A. James Casner

• The formulas that govern future interests are similar to
those of chemistry. They seem to be more of the law of
nature than law of men except for one crucial difference:
The rules of future interests occasionally make no sense.”
– Daniel B. Bogart

Inspiration

Conveyances are a programming language

• Future interests feel different from other parts of law
because ambiguity and discretion have been wrung out

• Centuries of judicial rigidity turned future interests into a
highly formalized system mostly following consistent rules

• “to X for life” —> X’s interest terminates at X’s death

• “Y, but if C to X” —> X’s interest cuts off Y if C occurs

• These rules have the modular recursive generative
structure of a programming language

Our project

• Formalize the language of conveyances (Orlando)

• Syntax

• Semantics

• Create an interpreter for that language (Littleton)

• OCaml back-end

• Command-line and Bootstrap+JS front-ends

Formalization

Moving parts

1. Concrete syntax of conveyances 
Represents the actual language used by a lawyer

2. Abstract data type of title trees 
Represents the legal interests in a piece of property

3. Syntax-directed translation function from (1) to (2) 
Captures the speech-act effects of legal language

4. Semantics to update (2) in response to events 
Implements the doctrines of property law

(1) Conveyance syntax is a context-free grammar

Conveyance syntax grammar

Parsing

(2) Title trees

Graphical representation of title trees

(3) Translation function

Translation

(4) Title tree semantics

A conveyance and subsequent events

B marries. (1)

A dies. (2)

 (3)

 (4)

B dies. (5)

Implementation

Littleton back-end

• ~6000 lines of OCaml

• ~3000 lines of framework

• ~1000 lines of legal semantics

• ~1000 lines of symbolic AI to reason about events

• ~1000 lines of parsing code

Littleton front end

• Command-line “interpreter” for Orlando

• Interactive web app

• Compiled to JS that runs in-browser

• Bootstrap interface

• Available at https://conveyanc.es

https://conveyanc.es

Demonstration

https://conveyanc.es

Reflection

Advantages of formalization

• Captures the existing rules law students learn

• Recovers the underlying logic that has been obscured by
generations of rote learning

• Reveals broader patterns hidden by the proliferation of
names and details

• Provides a principled basis for critique and reform

Legal variation = different formal rules

Syntactic ambiguity

Unnecessary complexity

Advantages of implementation

• Visualization for education

• Interactivity for experimentation

A programming-language approach to law

• Treating future interests as a programming language
captures the linguistic structure of conveyances

• Fits legal areas with rule-driven linguistic structure

• Other suitable bodies of law: property, contracts, tax

Questions

