
The Structure and  
Legal Interpretation of  
Computer Programs

James Grimmelmann


ProLaLa23

January 15, 2023



Motivation

• Judges interpret legal texts:


• Does “no vehicles in the park” include 
electric scooters?


• Judges also interpret software:


• Does the functionality of sendmail and 
fingerd allow the Morris Internet worm?


• What is the legal meaning of a program?



Who is the interpreter?

• Legal texts are addressed to people: citizens, 
counterparties, guests, and especially judges


• They mean what they mean to people


• Programs are addressed to computers: they 
consists of a series of commands to execute


• Do they mean (only) what they cause 
computers to do?



Interpretive strategy 1:

naive functional meaning
• A program’s meaning is the effects it has on 

the computer running it


• Conceptually simple: meaning = effects


• Operationally simple: run it and find out


• Natural language is vague and ambiguous


• But it’s easy to observe a computation, and 
people will agree on what its outputs are



Objection

• Real-world computations often fail


• But naive functional meaning says that the 
failure mode is the program’s meaning


• For legal purposes, this is often clearly wrong


• E.g., if the ATM crashes before dispensing 
your cash, you’re still entitled to the money



Response

• Programming-language definitions distinguish 
correct from incorrect executions


• Natural-language specifications


• Formal mathematical semantics


• Reference implementations


• Test cases


• So: derive program meanings from language definitions



Interpretive strategy 2: 
literal functional meaning

• A program’s meaning is the effects it would 
have on a computer that correctly implements 
the language in which the program is written


• Based on abstract language definitions


• Rather than on concrete executions



Challenge

• Language semantics are defined the people 
who agree on what the language semantics are


• This agreement can change or break down!


• E.g., 1_000_000 is invalid in Python 3.5.2 
but valid in Python 3.6.1


• E.g., Firefox and Chrome implement CSS 
differently



The problem of bugs

• I write a program to draw an octagon, but it 
draws an eight-pointed star instead


• I wrote 135 instead of 45


• So I write a new program and fix the bug 


• Naive and literal functional meaning treat the 
two programs as equally valid


• But to me, one is buggy and one is correct



Interpretive strategy 3: 
ordinary functional meaning

• Legal theorists distinguish the literal meaning 
of a text from its ordinary meaning to a 
reasonable reader who ignores mistakes, etc.


• Ordinary functional meaning = what a 
reasonable reader would expect the program 
to do if it were free of bugs



Which interpretative 
strategy is right?

• They all are


• Programmers switch between them frequently


• Judges and lawyers need to use all three


• E.g., Morris involved a distinction between 
literal functional meaning (he installed the worm 
via sendmail) and ordinary functional meaning 
(that’s wasn’t the “intended function”)



Discussions


